精英家教网 > 高中数学 > 题目详情
19.在直三棱柱ABC-A1B1C1中,AC=2,CB=CC1=4,∠BCA=90°,E、F、M、N分别是A1B1、AB、C1B1、CB的中点,建立如图所示的坐标系.
(1)在平面ABB1A1内找一点P,使△ABP为正三角形;
(2)能否在MN上求得点Q,使△AQB为以AB为斜边的直角三角形?若能,请求出点Q的坐标;若不能,请说明理由.

分析 (1)由已知可得P的横纵坐标与AB中点的横纵坐标相等,竖坐标的绝对值等于正三角形的高,进而得到答案;
(2)若△AQB为以AB为斜边的直角三角形,则$\overrightarrow{AQ}$•$\overrightarrow{BQ}$=0,进而得到答案;

解答 解:(1)直三棱柱ABC-A1B1C1中,AC=2,CB=CC1=4,∠BCA=90°,
故AB=$\sqrt{{AC}^{2}{+CB}^{2}}$=2$\sqrt{5}$,
若△ABP为正三角形,则P到AB的距离为正三角形的高:2$\sqrt{5}$×$\frac{\sqrt{3}}{2}$=$\sqrt{15}$,
又由P在平面ABB1A1内,
故P的横纵坐标与AB中点的横纵坐标相等,竖坐标的绝对值等于正三角形的高,
∵AC=2,CB=4,
故AB中点坐标为(1,2,0),
故P点坐标为:(1,2,±$\sqrt{15}$);
(2)设Q点的坐标为(0,2,z),
则$\overrightarrow{AQ}$=(-2,2,z),$\overrightarrow{BQ}$=(0,-2,z),
若△AQB为以AB为斜边的直角三角形,
则$\overrightarrow{AQ}$•$\overrightarrow{BQ}$=0,
即Z2=4,
解得:z=2,或z=-2(舍去),
故Q点的坐标为(0,2,2)

点评 本题考查的知识点是向量数量积判断向量的垂直,等边三角形的性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,正四面体ABCD的棱长为1.
(1)求异面直线AB、CD之间的距离;
(2)求点A到平面BCD的距离;
(3)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图的框图,若输入k=30,则输出的n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=|2x-$\frac{a}{{2}^{x}}$|,其在区间[0,1]上单调递增,则a的取值范围为(  )
A.[0,1]B.[-1,0]C.[-1,1]D.[-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|x2-x-2<0},B={x|-1<x<1},则(  )
A.A?BB.B⊆AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,函数$y=\sqrt{x}$的图象过矩形OABC的顶点B,且OA=4.若在矩形OABC内随机地撒100粒豆子,落在图中阴影部分的豆子有67粒,则据此可以估算出图中阴影部分的面积约为(  )
A.2.64B.2.68C.5.36D.6.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-x
(1)求函数g(x)=f(x)-x-2的图象在x=1处的切线方程
(2)证明:$|{f(x)}|>\frac{lnx}{x}+\frac{1}{2}$
(3)设m>n>0,比较$\frac{f(m)-f(n)}{m-n}+1$与$\frac{m}{{{m^2}+{n^2}}}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果实数x,y满足条件$\left\{\begin{array}{l}{x-2y+2≥0}\\{2x-y-2≤0}\\{x+y-1≥0}\end{array}\right.$,則z=3x-2y的最小值为(  )
A.-4B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}的前n项和Sn=n2-2n+1,△ABC的三边长之比为a3:a4:a5,则△ABC的最大角的余弦值为(  )
A.$\frac{\sqrt{2}-\sqrt{6}}{4}$B.-$\frac{1}{2}$C.-$\frac{1}{4}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案