精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A、B、C的对边分别为a、b、c.已知bcosA-2ccosB=2bcosC-acosB.
(1)求
sinC
sinA
的值;
(2)若cosB=
1
4
,b=2,△ABC的面积S.
考点:余弦定理的应用,正弦定理的应用
专题:综合题,解三角形
分析:(1)利用正弦定理,结合和角的正弦公式,即可求
sinC
sinA
的值;
(2)先求出c=2a,再结合cosB=
1
4
,b=2,利用余弦定理,可求a,c的值,即可求出△ABC的面积S.
解答: 解:(1)∵bcosA-2ccosB=2bcosC-acosB,
∴sinBcosA-2sinCcosB=2sinBcosC-sinAcosB,
∴sinBcosA+sinAcosB=2(sinCcosB+sinBcosC),
∴sin(A+B)=2sin(B+C),
又A+B+C=π,
∴sinC=2sinA,
sinC
sinA
=2;
(2)由
sinC
sinA
=2得c=2a,
∵cosB=
1
4
,b=2,
∴由余弦定理可得4=a2+4a2-4a2×
1
4

∴解得a=1.
因此c=2,
∵cosB=
1
4

∴sinB=
15
4

∴△ABC的面积S=
1
2
acsinB=
1
2
×1×2×
15
4
=
15
4
点评:本题考查正弦定理、余弦定理,和角的正弦公式,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)上的一点M(3,y0)到焦点F的距离等于4.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若过点(4,0)的直线l与抛物线C相交于A,B两点,求△ABO面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C为锐角△ABC的三个内角,若
p
q
是共线向量,且两向量
p
=(2-2sinA,cosA+sinA),
q
=(sinA-cosA,1+sinA).
(1)求A的大小;
(2)求函数y=2sin2B+cos(
C-3B
2
)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位N名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.下表是年龄的频率分布表.
区间 [25,30) [30,35) [35,40) [40,45) [45,50]
人数 25 a b
(1)求正整数a,b,N的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若对于一切正整数n,不等式(1+
1
2
)(1+
1
4
)(1+
1
6
)…(1+
1
2n
)≤a
2n+1
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:
(Ⅰ)求参加数学抽测的人数n、抽测成绩的中位数及分数分别在[80,90),[90,100]内的人数;
(Ⅱ)若从分数在[80,100]内的学生中任选两人进行调研谈话,求恰好有一人分数在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个建设集团公司共有3n(n≥2,n∈N*)个施工队,编号分别为1,2,3,…3n.现有一项建设工程,因为工人数量和工作效率的差异,经测算:如果第i(1≤i≤3n)个施工队每天完成的工作量都相等,则它需要i天才能独立完成此项工程.
(1)求证第n个施工队用m(1≤m<n,m∈N*)天完成的工作量不可能大于第n+k(1≤k≤2n)个施工队用m+k天完成的工作量;
(2)如果该集团公司决定由编号为n+1,n+2,…,3n共2n个施工队共同完成,求证它们最多不超过两天即可完成此项工作.

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
2m
+
y2
m-4
=1
的一条渐近线与直线2x-
2
y-3
=0垂直,则双曲线的离心率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2-
3
)9=a+b
3
,则a2-3b2=
 

查看答案和解析>>

同步练习册答案