精英家教网 > 高中数学 > 题目详情
11.若f(x)=2x3-3x2-12x+3在区间[m,m+4]上是单调函数,则实数m的取值范围为(-∞,-5]∪[2,+∞).

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,根据函数的单调性得到关于m的不等式,解出即可.

解答 解:f′(x)=6x2-6x-12=6(x+1)(x-2),
令f′(x)>0,解得:x>2或x<-1,
令f′(x)<0,解得:-1<x<2,
∴f(x)在(-∞,-1]和[2,+∞)上单调递增,在[-1,2]上单调递减,
若f(x)在[m,m+4]单调,
∴m+4≤-1或m≥2,
∴m≤-5或m≥2,
即m的取值范围是(-∞,-5]∪[2,+∞),
故答案为:(-∞,-5]∪[2,+∞).

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=3x2+2x-a在区间(-1,1)上有唯一零点,则实数a的取值范围是1<a<5或$a=-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)的图象关于点(-$\frac{3}{4}$,0)成中心对称,且对任意的实数x都有$f(x)=-f(x+\frac{3}{2})$,f(-1)=1,f(0)=-2,则f(1)+f(2)+…+f(2 017)=(  )
A.0B.-2C.1D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.我市在“录像课评比”活动中,评审组将从录像课的“点播量”和“专家评分”两个角度来进行评优.若A录像课的“点播量”和“专家评分”中至少有一项高于B课,则称A课不亚于B课.假设共有5节录像课参评,如果某节录像课不亚于其他4节,就称此节录像课为优秀录像课.那么在这5节录像课中,最多可能有5节优秀录像课.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若直线l与椭圆$C:\frac{x^2}{9}+\frac{y^2}{5}=1$交于A,B两点,若A,B中点坐标为(1,1),则弦AB的垂直平分线方程为5x+9y-14=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A(-1,0),B(3,0),则与A距离为1且与B距离为4的点有(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)在R上存在导函数f'(x),对任意的实数x都有f(x)=4x2-f(-x),当x∈(-∞,0)时,f'(x)+$\frac{1}{2}$<4x.若f(m+1)≤f(-m)+3m+$\frac{3}{2}$,则实数m的取值范围是(  )
A.$[{-\frac{1}{2},+∞})$B.$[{-\frac{3}{2},+∞})$C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在空间中,下列命题正确的是(  )
A.经过三个点有且只有一个平面
B.经过一个点和一条直线有且只有一个平面
C.经过一条直线和直线外一点的平面有且只有一个
D.经过一个点且与一条直线平行的平面有且只有一个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=ln(ax2+x)在区间(0,1)上单调递增,则实数a的取值范围为a≥-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案