精英家教网 > 高中数学 > 题目详情
8.已知直线l:3x+4y+3=0和圆C:x2+y2-2x-2y+1=0.
(Ⅰ)判断直线l与圆C的位置关系;
(Ⅱ)若P是直线l上的动点,PA是圆C的一条切线,A是切点,求三角形PAC的面积S的最小值.

分析 (I)判断圆心C(1,1)到直线l:3x+4y+3=0的距离为d>r,即可判断;
(II)由切线的性质可知,PA⊥AC,若使得$PA=\sqrt{P{C}^{2}-1}$取得最小值,则只要PA取得最小值,即可求解

解答 解:圆C:x2+y2-2x-2y+1=0化为标注方程为:(x-1)2+(y-1)2=1,圆心坐标为C(1,1),半径为r=1
(I)∵圆心C(1,1)到直线l:3x+4y+3=0的距离为d=$\frac{|3×1+4×1+3|}{5}$=2>r
∴直线l与圆相离;
(II)由切线的性质可知,PA⊥AC,且AC=1
∴$PA=\sqrt{P{C}^{2}-1}$
当PC⊥l时,PC取得最小值2
∴PA的最小值为$\sqrt{3}$
此时,△PAC面积取得最小值S△PAC=$\frac{1}{2}PA×AC$=$\frac{1}{2}PA$=$\frac{\sqrt{3}}{2}$

点评 本题主要考查直线与圆的位置关系,在求直线上点与已知点的距离的最小值时,常转化为求点到直线的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.求证:$\frac{sinx}{1+cosx}$-$\frac{cosx}{1+sinx}$=$\frac{2(sinx-cosx)}{1+sinx+cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知周长为16的△ABC的两顶点与椭圆M的两个焦点重合,另一个顶点恰好在椭圆M上,则下列椭圆中符合椭圆M条件的是(  )
A.$\frac{x^2}{25}+\frac{y^2}{16}=1$B.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$+$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x与y之间的一组数据(如下表),y与x的线性回归直线为$\widehaty=bx+a$,则a-b=-1.
x0123
y1357

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点A(a,b)在y=-x2+3lnx的图象上,点B(m,n)在y=x+2的图象上,则(a-m)2+(b-n)2的最小值为(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$),且f($\frac{π}{12}$)=1,为了得到g(x)=sin2x的图象,则只要将f(x)的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.四张卡片上分别标记数字1,2,3,4,现在有放回的抽取三次,所取卡片数字分别记为a,b,c.
(1)记“a,b,c完全相同”为事件A,“a,b,c不完全相同”为事件B,分别求事件A,B的概率;
(2)记“a•b=c”为事件C,求事件C的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若直线ax-y+1=0与直线2x+y+2=0平行,则a的值为(  )
A.-2B.-1C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知命题p:?x∈R,使sinx<$\frac{1}{2}$x成立,则¬p是?x∈R,使sinx≥$\frac{1}{2}$x.

查看答案和解析>>

同步练习册答案