精英家教网 > 高中数学 > 题目详情
如图,已知⊙O1与⊙O2外切于点P,AB是两圆的外公切线,A,B为切点,AB与O1O2 的延长线相交于点C,延长AP交⊙O2于点D,点E在AD延长线上.
(1)求证:△ABP是直角三角形;
(2)若AB•AC=AP•AE,试判断AC与EC能否一定垂直?并说明理由.
(3)在(2)的条件下,若AP=4,PD=
9
4
,求
EC
AC
的值.
考点:与圆有关的比例线段
专题:立体几何
分析:(1)过点P作两圆公切线PN交AB于N,由切线长定理能证明△PAB为直角三角形.
(2)由AB•AC=AP•AE,得△PAB∽△CAE,能此推导出AC⊥EC.
(3)由切割线定理,AB2=AP•AD,由此能求出
EC
AC
=
3
4
解答: (1)证明:过点P作两圆公切线PN交AB于N,
由切线长定理得:
NP=NA=NB,∴△PAB为直角三角形. …(3分)
(2)解:AC⊥EC.
理由如下:
∵AB•AC=AP•AE,
AB
AP
=
AE
AC
,又∠PAB=∠EAC,
∴△PAB∽△CAE,
∴∠ECA=∠APB=90°,
即AC⊥EC.…(6分)
(3)解:由切割线定理,AB2=AP•AD,
∴AB=5,PB=3,PB:PA=3:4=EC:AC,
EC
AC
=
3
4
.…(9分)
点评:本题考查直角三角形的证明,考查两直线是否存在的判断与求法,考查两线段比值的求法,解题时要认真审题,注意切割线定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,A、B、C、D四点共圆,BC和AD的延长线交于点E,点F在AB的延长线上.
(Ⅰ)若EA=2ED,CE=2BC,求
AB
CD
的值;
(Ⅱ)若EF∥CD,求证:线段FA、FE、FB成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,x},B={x2,0},问是否存在x,使A=B?若存在,求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax+b(a≠0).
(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;
(2)求函数f(x)的单调区间与极值点.
(3)设函数f(x)的导函数是f′(x),当a=1时求证:对任意x1,x2∈(3,+∞),|f(x1)-f(x2)|≥|f′(x1)-f′(x2)|成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3×2x,若g(x)=
cxf(x)
2x(x2-1)
,讨论g(x)在(-1,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据反比例函数图象,利用平移直接作出下列函数图象,并求出其在1≤x≤5的最大值和最小值.          
(1)y=-
1
x+2

(2)y=-
1
x-1
-1;    
(3)y=
3x+1
x-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x丨a-1<x<1-a},B={x丨x≤-1,或x≥4},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,若S15=78,则a5+a6+a9+a12=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位向量
m
n
的夹角为
π
3
,则(2
n
-
m
)•
m
=
 

查看答案和解析>>

同步练习册答案