精英家教网 > 高中数学 > 题目详情
19.4名学生被中大、华工、华师录取,若每所大学至少要录取1名,则共有不同的录取方法36种.

分析 先从4名学生中任意选2个人作为一组,方法有C42种;再把这一组和其它2个人分配到3所大学,方法有A33种,再根据分步计数原理求得结果.

解答 解:先从4名学生中任意选2个人作为一组,方法有C42=6种;再把这一组和其它2个人分配到3所大学,方法有A33=6种.
再根据分步计数原理可得不同的录取方法为6×6=36种,
故答案为:36种.

点评 本题主要考查排列组合、两个基本原理的实际应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数$f(x)={log_2}({{x^2}-x})$的定义域为(  )
A.[0,1]B.(0,1)C.(-∞,0]∪[1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线E:y2=8x,圆M:(x-2)2+y2=4,点N为抛物线E上的动点,O为坐标原点,线段ON的中点的轨迹为曲线C.
(1)求抛物线C的方程;
(2)点Q(x0,y0)(x0≥5)是曲线C上的点,过点Q作圆M的两条切线,分别与x轴交于A,B两点.求△QAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图的程序框图,那么输出S的值是(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知奇函数f(x)满足f(x-2)=f(x),当0<x<l时,f(x)=2x,则f(log29)的值为(  )
A.9B.-$\frac{1}{9}$C.-$\frac{16}{9}$D.$\frac{16}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设离散型随机变量X的分布列为
X01234
P0.20.10.10.30.3
若离散型随机变量Y满足Y=2X+1,则E(Y)=5.8;D(Y)=23.2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$sinα=\frac{{4\sqrt{3}}}{7},cos(β-α)=\frac{13}{14},且0<β<α<\frac{π}{2}$.
(1)求tan2α的值;
(2)求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(ax+1)lnx-ax+3,a∈R,g(x)是f(x)的导函数,e为自然对数的底数.
(1)讨论g(x)的单调性;
(2)当a>e时,证明:g(e-a)>0;
(3)当a>e时,判断函数f(x)零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若将函数y=2cos2x的图象向右平移$\frac{π}{12}$个单位长度,则平移后函数的一个零点是(  )
A.($\frac{5}{6}$π,0)B.($\frac{7π}{6}$,0)C.(-$\frac{π}{3}$,0)D.($\frac{π}{6}$,0)

查看答案和解析>>

同步练习册答案