精英家教网 > 高中数学 > 题目详情
16.在△ABC中,如果$\frac{a}{cosB}=\frac{b}{cosA}$,则该三角形是(  )
A.等腰三角形B.直角三角形
C.等腰或直角三角形D.以上答案均不正确

分析 由余弦定理化简已知等式,整理可得:(a2+b2)(a2-b2)=c2(a2-b2),从而解得a2-b2=0,即a=b,三角形为等腰三角形,或a2+b2=c2,即三角形为直角三角形.

解答 解:∵$\frac{a}{cosB}=\frac{b}{cosA}$,即acosA=bcosB,
∴由余弦定理可得:a×$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=b×$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,整理可得:(a2+b2)(a2-b2)=c2(a2-b2),
∴a2-b2=0,即a=b,三角形为等腰三角形,或a2+b2=c2,即三角形为直角三角形.
综上该三角形一定是等腰或直角三角形.
故选:C.

点评 本题主要考查了余弦定理、勾股定理的综合应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知lgx+lgy+lgz=0,求证:$\frac{1}{{x}^{2}(y+z)}$+$\frac{1}{{y}^{2}(x+z)}$+$\frac{1}{{z}^{2}(x+y)}$≥$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ln(ekx+1)-x(其中e为自然对数的底数)为定义在R上的偶函数,且f(x)=lnu(x).
(1)求实数k的值,并求函数u(x)的表达式;
(2)若函数g(x)=e2x+e-2x-2p•u(x)的最小值为-3,求实数p的值;
(3)设函数h(x)=$\frac{{e}^{2x}+m•{e}^{x}+1}{({e}^{x}+1)^{2}}$,若对任意的x1,x2,x3∈R,都有h(x1)+h(x2)≥h(x3),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点P为抛物线C:x2=2py(p>0)上任意一点,O为坐标原点,点M(0,m),若|PM|≥|OM|恒成立,则实数m的取值范围为(  )
A.(-∞,$\frac{p}{4}$]B.(-∞,$\frac{p}{2}$]C.(-∞,p]D.(-∞,2p]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用数字0、1、2、3、4可以组成多少个无重复数字的四位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:方程$\frac{x^2}{2}+\frac{y^2}{m}$=1表示焦点在x轴上的椭圆,命题q:对任意实数x不等式x2+2mx+2m+3>0恒成立.
(Ⅰ)若“¬q”是真命题,求实数m的取值范围;
(Ⅱ)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.现有五个球分别记为A,B,C,D,E,随机放进三个盒子,每个盒子不空,则A、B在同一盒中的概率是(  )
A.$\frac{6}{25}$B.$\frac{11}{25}$C.$\frac{4}{15}$D.$\frac{6}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)是定义在R上的偶函数,当x∈(-∞,0)时,f(x)=x-x2,则当x∈(0,+∞)时,f(x)=-x-x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|ax2-2x+1|,x∈[0,4].
(1)当a<0时,求f(x)≥$\frac{1}{2}$的解集;
(2)求函数f(x)的最大值.

查看答案和解析>>

同步练习册答案