精英家教网 > 高中数学 > 题目详情
20.已知△ABC的内角为A,B,C,2sinA=$\sqrt{3}$sinB=3sinC,则cosB的值是$\frac{1}{12}$.

分析 由已知等式求出sinA,sinB,sinC的比值,利用正弦定理求出a,b,c的比值,设出a,b,c,利用余弦定理表示出cosB,代入计算即可求出值.

解答 解:∵2sinA=$\sqrt{3}$sinB=3sinC,
∴sinA:sinB:sinC=3:2$\sqrt{3}$:2,
利用正弦定理化简得:a:b:c=3:2$\sqrt{3}$:2,
设a=3k,b=2$\sqrt{3}$k,c=2k,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{4{k}^{2}+9{k}^{2}-12{k}^{2}}{12{k}^{2}}$=$\frac{1}{12}$.
故答案为:$\frac{1}{12}$

点评 此题考查了正弦、余弦定理,以及比例的性质,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设Sn为等差数列{an}的前n项和,若a2+a5=12,S3=9,则数列{an}的通项公式an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知正数组成的等比数列{an},若a1•a20=100,那么a3+a18的最小值为(  )
A.20B.25C.50D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某几何体的三视图如图所示,其正视图中的曲线部分为半圆,则该几何体的表面积为(  )
A.10+6$\sqrt{2}$+4π(cm2B.16+6$\sqrt{2}$+4π(cm2C.12+4π(cm2D.22+4π(cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设i是虚数单位,若复数z1=3+2i,z2=4-mi(m∈R),且z1•z2为实数,则m的值为(  )
A.6B.-6C.$\frac{8}{3}$D.-$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面α∥β,且α与β的距离为d(d>0). m?α.则在β内与直线m的距离为2d的直线共有(  )
A.0条B.1条C.2条D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a=sin2,b=log${\;}_{\frac{1}{3}}$2,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,则(  )
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在正三棱柱ABC-A1B1C1中,点D是BC的中点.
(1)求证:A1C∥平面AB1D;
(2)设M为棱CC1的点,且满足BM⊥B1D,求证:平面AB1D⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1的焦点与双曲线$\frac{x^2}{6}-{y^2}$=1的焦点重合,且与x轴,y轴的正半轴分别交于A,B两点,若|AB|=5
(1)求椭圆的方程;
(2)已知F1为椭圆的左焦点,求△ABF1的面积.

查看答案和解析>>

同步练习册答案