精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)的一系列对应值如下表:
x-
π
6
π
3
6
3
11π
6
3
17π
6
y-24-24
(1)根据表格提供的数据求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间和对称中心;
(3)若当x∈[0,
6
]时,方程f(x)=m+1恰有两个不同的解,求实数m的取值范围.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)由最值求出A、B的值,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式.
(2)令2kπ-
π
2
≤x-
π
3
≤2kπ+
π
2
(k∈Z)
,求得x的范围,可得函数f(x)单调递增区间.令x-
π
3
=kπ(k∈Z)
,求得x的值,可得对称中心,的坐标.
(3)方程f(x)=m+1可化为m=3sin(x-
π
3
)
,由x∈[0,
6
],利用正弦函数的定义域饿值域求得实数m的取值范围.
解答: 解:(1)设f(x)的最小正周期为T,得T=
11π
6
-(-
π
6
)=2π
,再由T=
ω
,得ω=1.
B+A=4
B-A=-2
,解得
A=3
B=1

ω•
6
+φ=2kπ+
π
2
(k∈Z)
,即
6
+φ=2kπ+
π
2
(k∈Z)
,解得φ=-
π
3

所以f(x)=3sin(x-
π
3
)+1

(2)令2kπ-
π
2
≤x-
π
3
≤2kπ+
π
2
(k∈Z)
,求得 2kπ-
π
6
≤x≤2kπ+
6

故函数f(x)单调递增区间为:[2kπ-
π
6
,2kπ+
6
],k∈z.
x-
π
3
=kπ(k∈Z)
,得x=kπ+
π
3
(k∈Z)

所以函数f(x)的对称中心为(kπ+
π
3
,1).
(3)方程f(x)=m+1可化为m=3sin(x-
π
3
)

因为x∈[0,
6
],所以 x-
π
3
∈[-
π
3
6
],∴sin( x-
π
3
)∈[-
3
2
,1],
由正弦函数图象可知,实数m的取值范围是[-
3
3
2
,3].
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由特殊点的坐标求出φ的值,正弦函数的单调性、对称性、定义域和值域,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
x≥1
y≤2
x-y≤0
,则x+y的最小值为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-3≤x≤1},B={x|a-1≤x≤2a+3},若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x-
5
2
|+|x-a|,x∈R.
(Ⅰ)求证:当a=-
1
2
时,不等式lnf(x)>1成立.
(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2所示.
(1)求证:AE⊥平面BCD;
(2)求二面角A-DC-B的余弦值;
(3)已知点M在线段AF上,且EM∥平面ADC,求
AM
AF
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形ABC中,过中线AD的中点E作直线分别与边AB和AC交于M、N两点,若
AM
=x
AB
AN
=y
AC
,则4x+y的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R,且a+b+c=3,a2+b2+c2的最小值为M.
(Ⅰ)求M的值;
(Ⅱ)解关于x的不等式|x+4|-|x-1|≥M.

查看答案和解析>>

科目:高中数学 来源: 题型:

为培养学生良好的学习习惯,学校对高一年级中的110名学生进行了有关作业量的调查,统计数据如下表:
认为作业多认为作业不多合计
喜欢玩游戏4020
不喜欢玩游戏20
合计
(Ⅰ)请补充完成2×2列联表,并根据此表判断:喜欢玩游戏与作业量是否有关?
(Ⅱ)若从喜欢玩游戏的60名学生中利用分层抽样的方法抽取6名,再从这6名学生中任取4名,求这4名学生中“认为作业多”的人数X的分布列与数学期望.附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=2,A=30°,C=45°,求△ABC的面积.

查看答案和解析>>

同步练习册答案