精英家教网 > 高中数学 > 题目详情
7.设极点O到直线l的距离d,由点O向l作垂线,垂足为A,由极轴到垂线OA的角为a,求直线l的极坐标方程.

分析 如图所示,设点P(ρ,θ)为直线l上的任意一点,利用直角三角形的边角关系即可得出.

解答 解:如图所示,设点P(ρ,θ)为直线l上的任意一点,则$ρ=\frac{d}{cos(θ-α)}$.

点评 本题考查了极坐标方程的求法、直角三角形的边角关系,考查了推理能力与计算能力,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-2+\sqrt{3}t\\ y=t\end{array}\right.$(t为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ,直线l与曲线C的公共点为M.
(Ⅰ)求点M的极坐标;
(Ⅱ)经过M点的直线l'被曲线C截得的线段长为2,求直线l'的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若点A(a,-1)在函数f(x)=$\left\{\begin{array}{l}{lgx.0<x<1}\\{\sqrt{x},x≥1}\end{array}\right.$的图象上,则a=(  )
A.1B.10C.$\sqrt{10}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某中学为了检验1000名在校高三学生对函数模块掌握的情况,进行了一次测试,并把成绩进行统计,得到样本频率分布直方图如图所示,则考试成绩的众数大约为(  )
A.55B.65C.75D.85

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=3x2+1,g(x)=x3-9x,若f(x)+g(x)在区间[k,2]上的最大值为28,则实数k的取值范围是(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x+2)是R上的偶函数,当x>2时,f(x)=x2+1,则当x<2时,f(x)=(  )
A.x2+1B.x2-8x+5C.x2+4x+5D.x2-8x+17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=2|x|,对于任意的实数k,定义函数gk(x)=$\left\{\begin{array}{l}{f(x),f(x)≥k}\\{{x}^{2}+2(k-4)x+(k-4)(k-3),f(x)<k}\end{array}\right.$.
(1)若k=4,求gk(x)的单调增区间;
(2)是否存在实数k,使gk(x)在区间(0,+∞)为增函数,若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.经过l1:2x-y+3=0与l2:3x-y+2=0的交点且垂直于直线l2的直线方程是x+3y-16=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数y=lnx-$\frac{a}{2}$x2在区间(${\frac{{\sqrt{2}}}{2}$,+∞)上是增函数,a的取值范围为(-∞,0].

查看答案和解析>>

同步练习册答案