相关习题
 0  226173  226181  226187  226191  226197  226199  226203  226209  226211  226217  226223  226227  226229  226233  226239  226241  226247  226251  226253  226257  226259  226263  226265  226267  226268  226269  226271  226272  226273  226275  226277  226281  226283  226287  226289  226293  226299  226301  226307  226311  226313  226317  226323  226329  226331  226337  226341  226343  226349  226353  226359  226367  266669 

科目: 来源: 题型:解答题

10.已知椭圆的中心在原点,右准线的方程为:x=4,左焦点是F(-1,0).
(Ⅰ)求椭圆的方程;
(Ⅱ)设Q是椭圆上一点,过F,Q的直线l与y轴交于点M,若|$\overrightarrow{MQ}$|=2|$\overrightarrow{QF}$|,求直线l的斜率.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知点M是椭圆$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}$=1上一点,F1,F2为椭圆的焦点,且△F1MF2的面积等于8,求点M的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知点F1(-$\sqrt{13}$,0)和点F2($\sqrt{13}$,0)是椭圆E的两个焦点,且点A(0,6)在椭圆E上.
(1)求椭圆E的方程;
(2)设P是椭圆E上的一点,若|PF2|=4,求以线段PF1为直径的圆的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设F1、F2是椭圆$\frac{{x}^{2}}{4}$+y2=1的左右焦点,过F2的直线l与椭圆交于A,B两点,求△F1AB的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知过点(0,-$\sqrt{3}$)的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项.
(1)求椭圆的离心率;
(2)设直AB与椭圆交于不同两点A、B,点A关于x轴的对称点为A′,若直线AB过定点T($\sqrt{2}$,0),求证:直线A′B过定点P(2$\sqrt{2}$,0).

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知中心在原点,焦点在x轴上的椭圆C的离心率为$\frac{\sqrt{3}}{2}$,点(0,$\sqrt{2}$)是椭圆与y轴的一个交点.
(1)求椭圆C的方程;
(2)直线x=2与椭圆交于P,Q两点,P点位于是第一象限,A,B是椭圆上位于直线x=2两侧的动点;
①若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的取值范围;
②当点A,B在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值?若是,求出此定值,若不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

4.过焦点在x轴上的椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{16}$=1的右焦点F2的直线交椭圆于A,B两点,F1是椭圆的左焦点,若△AF1B的周长为20,则实数m的值为(  )
A.5B.25C.10D.100

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且经过点($\sqrt{2}$,$\frac{\sqrt{3}}{3}$).
(1)求椭圆的标准方程;
(2)若直线1经过点F($\sqrt{2}$,0)与直线x=$\frac{3\sqrt{2}}{2}$交于点M,与椭圆交于A,B两点,设P为直线x=$\sqrt{2}$上异于F的点,设PA,PB,PM的斜率分别为k1,k2,k3,求证:k1+k2=2k3

查看答案和解析>>

科目: 来源: 题型:选择题

2.如图,底面为正方形且各侧棱长均相等的四棱锥V-ABCD可绕着棱AB任意旋转,若AB?平面α,M、N分别是AB、CD的中点,AB=2,VA=$\sqrt{5}$,点V在平面α上的射影为点O,则当ON的最大时,二面角C-AB-O的大小是(  )
A.90°B.105°C.120°D.135°

查看答案和解析>>

科目: 来源: 题型:选择题

1.如图是一个四棱锥的三视图,则该几何体的体积为(  )
A.16B.12C.9D.8

查看答案和解析>>

同步练习册答案