相关习题
 0  230270  230278  230284  230288  230294  230296  230300  230306  230308  230314  230320  230324  230326  230330  230336  230338  230344  230348  230350  230354  230356  230360  230362  230364  230365  230366  230368  230369  230370  230372  230374  230378  230380  230384  230386  230390  230396  230398  230404  230408  230410  230414  230420  230426  230428  230434  230438  230440  230446  230450  230456  230464  266669 

科目: 来源: 题型:解答题

15.某课题组对全班45名同学的饮食习惯进行了一次调查,并用茎叶图表示45名同学的饮食指数.说明:如图中饮食指数低于70的人被认为喜食蔬菜,饮食指数不低于70的人被认为喜食肉类
(1)根据茎叶图,完成下面2×2列联表,并判断是否有90%的把握认为喜食蔬菜还是喜食肉类与性别有关,说明理由:
喜食蔬菜喜食肉类合计
男同学
女同学
合计
(2)根据饮食指数在[10,39],[40,69],[70,99]进行分层抽样,从全班同学中抽取15名同学进一步调查,记抽取到的喜食肉类的女同学为ξ,求ξ的分布列和数学期望Eξ
下面公式及临界值表仅供参考:附:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$

P(K2≥k)0.1000.050.010
k2.7063.8416.635

查看答案和解析>>

科目: 来源: 题型:选择题

14.一个棱长为4的正方体沿其棱的中点截去部分后所得几何体的三视图如图所示,则该几何体的体积为(  )
A.40B.$\frac{136}{3}$C.56D.$\frac{184}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

13.某课题组对全班45名同学的饮食习惯进行了一次调查,并用茎叶图表示45名同学的饮食指数.说明:如图中饮食指数低于70的人被认为喜食蔬菜,饮食指数不低于70的人被认为喜食肉类
(1)求饮食指数在[10,39]女同学中选取2人,恰有1人在[10,29]中的概率;
(2)根据茎叶图,完成下面2×2列联表,并判断是否有90%的把握认为喜食蔬菜还是喜食肉类与性别有关,说明理由:
喜食蔬菜喜食肉类合计
男同学
女同学
合计
附:参考公式:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
下面临界值表仅供参考:
P(K2≥k)0.1000.050.010
k2.7063.8416.635

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知底面为正方形的四棱锥P-ABCD内接于半径为1的球.顶点P在底面ABCD上的射影是ABCD的中心.当四棱锥P-ABCD的体积最大时,四棱锥的高为$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,且(Sn-1)2=anSn(n∈N*).
(1)求出S1,S2,S3的值,并求出Sn及数列{an}的通项公式;
(2)设bn=(-1)n+1•(an+an+1)(n∈N*),求数列{bn}的前n项和Tn
(3)设cn=(n+1)•an(n∈N*),在数列{cn}中取出m(m∈N*且m≥3)项,按照原来的顺序排列成一列,构成等比数列{dn},若对任意的数列{dn},均有d1+d2+…+dn≤M,试求M的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

10.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为(  )
A.$\frac{{\sqrt{3}}}{2}π$B.$\frac{{\sqrt{3}}}{2}$C.D.3

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知三棱锥A-BCD中,AD⊥面ABC,∠BAC=120°,AB=AD=AC=2,求该棱锥的外接球半径.

查看答案和解析>>

科目: 来源: 题型:选择题

8.如图,网格纸上正方形小格的边长为1(单位:cm),图中粗线画出的是某零件的三视图,则该零件的体积(单位:cm2)为(  )
A.240-24πB.240-12πC.240-8πD.240-4π

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数$f(x)=\frac{lnx+a}{x}(a∈R)$.
(1)求f(x)的极值;
(2)求证:$\frac{ln2}{6}+\frac{ln2•ln3}{24}+…+\frac{ln2•ln3…lnn}{(n+1)!}<\frac{n-1}{2n+2},n≥2$且n∈N*

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知正方体ABCD-A1B1C1D1的棱长a=2,P为该正方体的内切球的表面上的动点,且始终有AP⊥A1C,则动点P的轨迹的长度为(  )
A.$\frac{{\sqrt{3}π}}{3}$B.$\frac{{\sqrt{6}π}}{3}$C.$\frac{{2\sqrt{3}π}}{3}$D.$\frac{{2\sqrt{6}π}}{3}$

查看答案和解析>>

同步练习册答案