相关习题
 0  230313  230321  230327  230331  230337  230339  230343  230349  230351  230357  230363  230367  230369  230373  230379  230381  230387  230391  230393  230397  230399  230403  230405  230407  230408  230409  230411  230412  230413  230415  230417  230421  230423  230427  230429  230433  230439  230441  230447  230451  230453  230457  230463  230469  230471  230477  230481  230483  230489  230493  230499  230507  266669 

科目: 来源: 题型:解答题

18.三棱锥P-ABC,底面ABC为边长为2$\sqrt{3}$的正三角形,平面PBC⊥平面ABC,PB=PC=2,D为AP上一点,AD=2DP,O为底面三角形中心.
(Ⅰ)求证DO∥面PBC;
(Ⅱ)求证:BD⊥AC;
(Ⅲ)设M为PC中点,求平面MBD和平面BDO所成锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PA=AD,点E为AB中点,点F在线段PD上,且PF:FD=1:3.
(1)证明平面PED⊥平面FAB;
(2)求二面角P-AB-F的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.在平面直角坐标系xOy中,E,F两点的坐标分别为(0,1),(0,-1),动点G满足:直线EG与直线FG的斜率之积为-$\frac{1}{2}$.
(1)求动点G的轨迹方程;
(2)⊙O是以EF为直径的圆,一直线l:y=kx+m与⊙O相切,并与动点G的轨迹交于不同的两点A,B.当$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{2}{3}$时,求△AOB的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在多面体ABCDE中,∠BAC=90°,AB=AC=2,CD=2AE=2,AE∥CD,且AE⊥底面ABC,F为BC的中点.
(Ⅰ)求证:AF⊥BD;
(Ⅱ)求二面角A-BE-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,在多面体ABCDEF中,CDEF为矩形,ABCD为直角梯形,平行CDEF⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD=1,ED=$\sqrt{3}$,M为线段EA上动点.
(Ⅰ)若M为EA中点,求证:AC∥平面MDF;
(Ⅱ)线段EA上是否存在点M,使平面MDF与平面ABCD所成的锐二面角大小为$\frac{π}{3}$?若存在,求出AM的长度,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知斜率为1的直线l与圆心为O1(1,0)的圆相切于点P,且点P在y轴上.
(Ⅰ)求圆O1的方程;
(Ⅱ)若直线l′与直线l平行,且圆O1上恰有四个不同的点到直线l′的距离等于$\frac{\sqrt{2}}{2}$,求直线l′纵截距的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在四棱锥P-ABCD中,CD⊥平面PAD,AB∥CD,AD⊥PA,△ADC、△PAD均为等腰三角形,AD=4AB=4,M为线段CP上一点,且$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1).
(1)若λ=$\frac{1}{4}$,求证:MB∥平面PAD;
(2)若λ=$\frac{1}{8}$,求二面角C-AB-M的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,点M和N分别为A1B1和BC的中点.
(1)求证:AC⊥BM;
(2)求证:MN∥平面ACC1A1
(3)求二面角M-BN-A的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)若AE=2-$\sqrt{3}$,求二面角D1-EC-D的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足$\overrightarrow{PM}$=$\overrightarrow{MP}$,当P在圆C上运动时,点M形成的轨迹为曲线E
(Ⅰ)求曲线E的方程;
(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且$\overrightarrow{AC}$=$\frac{3}{5}$$\overrightarrow{AD}$,求直线l的方程.

查看答案和解析>>

同步练习册答案