相关习题
 0  245324  245332  245338  245342  245348  245350  245354  245360  245362  245368  245374  245378  245380  245384  245390  245392  245398  245402  245404  245408  245410  245414  245416  245418  245419  245420  245422  245423  245424  245426  245428  245432  245434  245438  245440  245444  245450  245452  245458  245462  245464  245468  245474  245480  245482  245488  245492  245494  245500  245504  245510  245518  266669 

科目: 来源: 题型:选择题

6.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2渐近线分别为l1,l2,位于第一象限的点P在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知,a,b,c分别是△ABC三个内角A,B,C的对边,下列四个命题:
①若tanA+tanB+tanC>0,则△ABC是锐角三角形
②若acoA=bcosB,则△ABC是等腰三角形
③若bcosC+ccosB=b,则△ABC是等腰三角形
④若$\frac{a}{cosA}$=$\frac{b}{cosB}=\frac{c}{cosC}$,则△ABC是等边三角形
其中正确命题的序号是①③④.

查看答案和解析>>

科目: 来源: 题型:选择题

4.极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,则|PQ|的最小值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目: 来源: 题型:选择题

3.过曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{5}$-1C.$\sqrt{5}$+1D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{-2,}&{x>0}\\{-{x}^{2}+bx+c,}&{x≤0}\end{array}\right.$,若f(0)=-2,f(-1)=1,则函数g(x)=f(x)+x的零点个数为3.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知{an},{bn},{cn}都是各项不为零的数列,且满足a1b1+a2b2+…+anbn=cnSn,n∈N*,其中Sn是数列{an}的前n项和,{cn}是公差为d(d≠0)的等差数列.
(1)若数列{an}是常数列,d=2,c2=3,求数列{bn}的通项公式;
(2)若an=λn(λ是不为零的常数),求证:数列{bn}是等差数列;
(3)若a1=c1=d=k(k为常数,k∈N*),bn=cn+k(n≥2,n∈N*),求证:对任意的n≥2,n∈N*,数列$\{\frac{b_n}{a_n}\}$单调递减.

查看答案和解析>>

科目: 来源: 题型:填空题

20.小明通过做游戏的方式来确定周末活动,他随机地往单位圆中投掷一点,若此点到圆心的距离大于$\frac{1}{2}$,则周末看电影;若此点到圆心的距离小于$\frac{1}{4}$,则周末打篮球;否则就在家看书.那么小明周末在家看书的概率是$\frac{3}{16}$.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知圆C的极坐标方程为ρ2+2ρ(sinθ-cosθ)=2,直线l的参数方程为$\left\{\begin{array}{l}{x=3+tcosα}\\{y=4+tsinα}\end{array}\right.$(t为参数,α为倾斜角).
(1)若圆C上存在两点关于直线l对称,求直线l的斜率;
(2)若直线l与圆C交于两个不同的点,求直线l的斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.设A,B均为非空集合,且A∩B=∅,A∪B={1,2,3,…,n}(n≥3,n∈N*).记A,B中元素的个数分别为a,b,所有满足“a∈B,且b∈A”的集合对(A,B)的个数为an
(1)求a3,a4的值;
(2)求an

查看答案和解析>>

科目: 来源: 题型:解答题

17.若函数f(x)=x2+2a|x-2|,数列{an}的前n项和为Sn,满足Sn=f(n).
(1)若数列{an}为递增数列,求实数a的取值范围;
(2)当a=$\frac{1}{2}$时,设数列{bn}满足:bn=2${\;}^{{a}_{n}}$,记{bn}的前n项和Tn,求满足不等式Tn>2015的最小整数n;
(3)当函数f(x)为偶函数时,对任意给定的k(k∈N*),是否存在自然数p,r(k<p<r)使$\frac{1}{{a}_{k}}$,$\frac{1}{{a}_{p}}$,$\frac{1}{{a}_{r}}$成等差数列?若不存在,说明理由;若存在,请找出p,r与k的一组关系式.

查看答案和解析>>

同步练习册答案