相关习题
 0  246573  246581  246587  246591  246597  246599  246603  246609  246611  246617  246623  246627  246629  246633  246639  246641  246647  246651  246653  246657  246659  246663  246665  246667  246668  246669  246671  246672  246673  246675  246677  246681  246683  246687  246689  246693  246699  246701  246707  246711  246713  246717  246723  246729  246731  246737  246741  246743  246749  246753  246759  246767  266669 

科目: 来源: 题型:解答题

15.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点是P(0,-1),且离心率为$\frac{\sqrt{3}}{2}$.圆C2:x2+y2=4,l1,l2是过点P且互相垂直的两条直线,其中直线l1交圆C2于A,B两点,直线l2与椭圆C1的另一交点为D.
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)求△ABD面积的最大值及取得最大值时直线l1的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F(-$\sqrt{3}$,0),过点F的直线交椭圆与A,B两点,当直线AB垂直x轴时,|AB|=$\frac{a}{2}$.
(1)求该椭圆方程;
(2)若斜率存在且不为0的动线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点(如图所示),记△GFD的面积为S1,△OED的面积为S2,求$\frac{{S}_{1}{S}_{2}}{{{S}_{1}}^{2}+{{S}_{2}}^{2}}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.对定义域分别是Df、Dg的函数y=f(x),y=g(x),
定义一个函数h(x):h(x)=$\left\{\begin{array}{l}{f(x)g(x),当x∈{D}_{f}且x∈{D}_{g}}\\{f(x),当x∈{D}_{f}且x∉{D}_{g}}\\{g(x),当x∉{D}_{f}且x∈{D}_{g}}\end{array}\right.$
(1)若f(x)=$\sqrt{3}$sinx+cosx(x≥0),g(x)=2cosx(x∈R),写出函数h(x)的解析式;
(2)在(I)的条件下,若$x∈[\frac{π}{6},\frac{π}{2}]$时,h(x)-1-m≥0恒成立,求m的取值范围;
(3)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos2x,并予以证明.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知△ABC三顶点均在双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1上,三边AB、BC、AC所在的直线的斜率均存在且均不为0,其和为-1;又AB、BC、AC的中点分别为M、N、P,O为坐标原点,直线OM、ON、OP的斜率分别为k1,k2,k3且均不为0,则$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+$\frac{1}{{k}_{3}}$=-$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

11.下列四个结论正确的序号是②③.(填上所有正确的序号)
①函数y=xsinx在区间(0,π)内无最大值;
②数列{an}的前n项和Sn=2n(n∈N*),对任意的正整数n总存在正整数m,使得 Sn=am
③若方程$\frac{{|{sinx}|}}{x}$=k(k>0)有且仅有两个不同的实数根x1,x2(x2>x1),则sinx1+x1cosx2=0.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1与双曲线5x2-$\frac{5}{4}$y2=1有相同的焦点,且二者的离心率之积是1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若斜率为1的直线交椭圆C于A、B两点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,四棱锥P-ABCD中,PA⊥PD,AD⊥CD,PA=PD,AD∥BC,AB=AD=2BC=2,E是棱PD的中点,设二面角P-AD-B的值为θ.
(Ⅰ)当θ=$\frac{π}{2}$时,求证:AP⊥CE;
(Ⅱ)当θ=$\frac{π}{6}$时,求二面角P-AB-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点(1,$\frac{3}{2}}$),且椭圆的左、右焦点分别为F1(-1,0)、F2(1,0),过椭圆的右焦点F2作两条互相垂直的直线,分别交椭圆于点 A、B及C、D.
(1)求椭圆的方程;
(2)求$\frac{1}{{|{{A}{B}}|}}$+$\frac{1}{{|{CD}|}}$的值;
(3)求|AB|+$\frac{9}{16}$|CD|的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

7.在等差数列{an}中公差d≠0,若a3+am-a7=an+a2-a5,则m-n=(  )
A.$\frac{1}{4}$B.1C.2D.4

查看答案和解析>>

科目: 来源: 题型:选择题

6.正四棱锥(底面是正方形,顶点在底面上的射影是底面中心)S-ABCD的底面边长为4,高为4,点E、F、G分别为SD,CD,BC的中点,动点P在正四棱锥的表面上运动,并且总保持PG∥平面AEF,动点P的轨迹的周长为(  )
A.$\sqrt{5}$+$\sqrt{6}$B.2$\sqrt{5}$+2$\sqrt{6}$C.$\sqrt{5}$+$\frac{{\sqrt{6}}}{2}$D.2$\sqrt{5}$+$\sqrt{6}$

查看答案和解析>>

同步练习册答案