相关习题
 0  246731  246739  246745  246749  246755  246757  246761  246767  246769  246775  246781  246785  246787  246791  246797  246799  246805  246809  246811  246815  246817  246821  246823  246825  246826  246827  246829  246830  246831  246833  246835  246839  246841  246845  246847  246851  246857  246859  246865  246869  246871  246875  246881  246887  246889  246895  246899  246901  246907  246911  246917  246925  266669 

科目: 来源: 题型:解答题

10.如图,在直三棱柱ABC-A1B1C1中,已知∠BAC=90°,AB=AC=1,AA1=3,点E,F分别在棱BB1,CC1上,且C1F=$\frac{1}{3}$C1C,BE=$\frac{1}{3}$BB1
(Ⅰ)证明:AC⊥平面A1ABB1
(Ⅱ)求直线AA1与平面AEF所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知复数z=$\frac{2-2i}{1+i}$,则z的共轭复数的虚部等于(  )
A.2iB.-2iC.2D.-2

查看答案和解析>>

科目: 来源: 题型:解答题

8.设函数f(x)=lnx-$\frac{1}{2}a{x^2}+x({a>-\frac{1}{4}})$.
(Ⅰ)若函数f(x)在点(1,f(1))处的切线与直线y=x平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当a=0,m>0时,方程2mf(x)=x2有唯一实数解,求m的值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在某学校组织的一次利于定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A处的命中率q1为$\frac{1}{4}$,在B处的命中率为q2.该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为:
ξ02345
P$\frac{3}{25}$p1p2p3p4
(I)求q2的值;
(Ⅱ)求随机变量ξ的数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知向量$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}$•$\overrightarrow{n}$=sin2C,且A,B,C分别为△ABC的三边a,b,c所对的角.
(I)求角C的大小;
(Ⅱ)若sinA,sinC,sinB成等差数列,且△ABC的面积为$9\sqrt{3}$,求c边的长.

查看答案和解析>>

科目: 来源: 题型:填空题

5.若cosα=$\frac{1}{3}$,则sin$({\frac{π}{2}+2α})$-$\frac{7}{9}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.以下茎叶图记录了某赛季甲、乙两名篮球运动员参加11场比赛的得分(单位:分)若甲运动员的中位数为a,乙运动员的众数为b,则a-b的值是8.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{cos(x-\frac{π}{2}),x∈[0,π]}\\{lo{g}_{2015}\frac{x}{π},x∈(π,+∞)}\end{array}\right.$,若有三个不同的实数a,b,c,使得f(a)=f(b)=f(c),则a+b+c的取值范围为(2π,2016π).

查看答案和解析>>

科目: 来源: 题型:解答题

2.某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级   摸出红.蓝球个数   获奖金额
一等奖 3红1蓝            200元
二等奖 3红0蓝            50元
三等奖 2红1蓝            10元
其余情况无奖且每次摸奖最多只能获得一个奖级.
(Ⅰ)求一次摸奖恰好摸到1个红球的概率;
(Ⅱ)求摸奖者在一次摸奖中获奖金额X的分布列与期望E(X ).

查看答案和解析>>

科目: 来源: 题型:解答题

1.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$),直线的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且点A在直线上.
(1)求a的值及直线的直角坐标方程;
(2)圆C的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数),试判断直线与圆的位置关系.

查看答案和解析>>

同步练习册答案