相关习题
 0  247460  247468  247474  247478  247484  247486  247490  247496  247498  247504  247510  247514  247516  247520  247526  247528  247534  247538  247540  247544  247546  247550  247552  247554  247555  247556  247558  247559  247560  247562  247564  247568  247570  247574  247576  247580  247586  247588  247594  247598  247600  247604  247610  247616  247618  247624  247628  247630  247636  247640  247646  247654  266669 

科目: 来源: 题型:选择题

7.盒中装有10个乒乓球,其中6个新球,4个旧球,不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为(  )
A.$\frac{3}{5}$B.$\frac{1}{10}$C.$\frac{5}{9}$D.$\frac{2}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.设P(1,f(1))是曲线C:f(x)=x2+2x+3上的一点,则曲线C过点P的切线方程是(  )
A.4x-y+10=0B.4x-y+2=0C.x-4y+10=0D.x-4y+2=0

查看答案和解析>>

科目: 来源: 题型:解答题

5.从射击、乒乓球、跳水、田径四个大项的雅典奥运冠军中选出6名作“夺冠之路”的励志报告.
(1)若每个大项中至少选派一人,则名额分配有几种情况?
(2)若将6名冠军分配到5个院校中的4个院校作报告,每个院校至少一名冠军,则有多少种不同的分配方法?

查看答案和解析>>

科目: 来源: 题型:选择题

4.下面四个图象中,有一个是函数f(x)=$\frac{1}{3}$x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(-1)等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{5}{3}$D.-$\frac{1}{3}$或$\frac{5}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

3.定义一种运算a?b=$\left\{\begin{array}{l}a,({a≤b})\\ b,({a>b})\end{array}$,令f(x)=(cos2x+sinx)?$\frac{3}{2}$,且x∈[-$\frac{π}{2},\frac{π}{2}}$],则函数f(x-$\frac{π}{2}}$)的最大值是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{5}{4}$D.1

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知点M(4,5)是⊙O:x2+y2-6x-8y=0内一点,则以点M为中点的圆O的弦长为(  )
A.2$\sqrt{5}$B.2$\sqrt{17}$C.2$\sqrt{23}$D.6

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=blnx,g(x)=ax2-x(a∈R).
(1)若曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,求实数a,b的值;
(2)若a=1,b=>2e,求方程f(x)-g(x)=x在区间(1,eb)内实根的个数.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知x1,x2分别是函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+2bx+c的两个极值点,且x1∈(0,1)x2∈(1,2),则$\frac{b-2}{a-1}$的取值范围为(  )
A.(1,4)B.($\frac{1}{2}$,1)C.($\frac{1}{4}$,$\frac{1}{2}$)D.($\frac{1}{4}$,1)

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知F是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点,B是虚轴的一个端点,线段BF与双曲线相交于D,且$\overrightarrow{BF}=2\overrightarrow{BD}$,则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

18.设i是虚数单位,则复数$\frac{4+3i}{3-4i}$=(  )
A.$\frac{4}{5}+\frac{3}{5}i$B.$\frac{4}{25}+\frac{3}{25}i$C.-iD.i

查看答案和解析>>

同步练习册答案