相关习题
 0  247750  247758  247764  247768  247774  247776  247780  247786  247788  247794  247800  247804  247806  247810  247816  247818  247824  247828  247830  247834  247836  247840  247842  247844  247845  247846  247848  247849  247850  247852  247854  247858  247860  247864  247866  247870  247876  247878  247884  247888  247890  247894  247900  247906  247908  247914  247918  247920  247926  247930  247936  247944  266669 

科目: 来源: 题型:解答题

8.袋中有红、白色球各一个,每次任取一个,有放回地抽三次,
(1)写出所有的基本事件;
(2)求三次颜色全相同的概率;
(3)求三次抽取的球中红色球出现的次数多于白色球出现的次数的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知x>y>0,且xy=3,求$\frac{{x}^{2}+{y}^{2}-2}{x-y}$的最小值及相应的x、y值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
y关于x的线性回归方程$\widehat{y}$=$\widehat{a}x+\widehat{b}$为$\hat{y}$=0.7x+1.05.

查看答案和解析>>

科目: 来源: 题型:选择题

5.设F1、F2,分别是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点M,使|OF1|=|OM|,O为坐标原点,且|MF1|=$\sqrt{2}$|MF2|,则该双曲线的离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\sqrt{3}+1$C.$\frac{\sqrt{3}+\sqrt{6}}{2}$D.$\sqrt{3}+\sqrt{6}$

查看答案和解析>>

科目: 来源: 题型:填空题

4.下列五个命题:
①“a>2”是“f(x)=ax-sinx为R上的增函数”的充分不必要条件;
②函数$f(x)=-\frac{1}{3}{x^3}+x+1$有两个零点;
③集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是$\frac{1}{3}$;
④动圆C既与定圆(x-2)2+y2=4相外切,又与y轴相切,则圆心C的轨迹方程是y2=8x(x≠0);
⑤若对任意的正数x,不等式ex≥x+a恒成立,则实数a的取值范围是a≤1.
其中正确的命题序号是①③⑤.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知$\overrightarrow{OA}$=$\overrightarrow{i}+3\overrightarrow{k}$,$\overrightarrow{OB}$=$\overrightarrow{j}+3\overrightarrow{k}$,则△OAB的面积为(  )
A.$\frac{\sqrt{19}}{2}$B.2$\sqrt{19}$C.$\sqrt{19}$D.8$\sqrt{19}$

查看答案和解析>>

科目: 来源: 题型:填空题

2.下列四个命题:
①函数$f(x)=\frac{1}{{{x^2}-2x+2}}$的值域为(0,1];
②若二次函数f(x)=ax2+bx+2没有零点,则b2-8a<0且a>0;
③函数y=x2-2|x|-3的递增区间为[1,+∞);
④函数$y=\sqrt{x+1}•\sqrt{x-1}$和$y=\sqrt{{x^2}-1}$是相同的函数;
其中正确命题为①.

查看答案和解析>>

科目: 来源: 题型:选择题

1.若直线ax-by+2=0(a>0,b>0)被圆x2+y2+4x-4y-1=0所截得的弦长为6,则$\frac{2}{a}+\frac{3}{b}$的最小值为(  )
A.10B.$4+2\sqrt{6}$C.$5+2\sqrt{6}$D.$4\sqrt{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在平面直角坐标系xOy中,设a1=2,有一组圆心在x轴正半轴上的圆An(n=1,2,…)与x轴的交点分别为A0(1,0)和An+1(an+1,0).过圆心An作垂直于x轴的直线ln,在第一象限与圆An交于点Bn(an,bn).
(Ⅰ)试求数列{an}的通项公式;
(Ⅱ)设曲边形An+1BnBn+1(阴影所示)的面积为Sn,若对任意n∈N*,$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}≤m$恒成立,试求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知函数f(x)=x2-2ax-2alnx(a∈R),则下列说法正确的是①③④.
①当a<0时,函数y=f(x)有零点;
②若函数y=f(x)有零点,则a<0;
③存在a>0,函数y=f(x)有唯一的零点;
④若函数y=f(x)有唯一的零点,则a≤1.

查看答案和解析>>

同步练习册答案