科目: 来源: 题型:
【题目】为了解高中生上学使用手机情况,调查者进行了如下的随机调查:调查者向被调查者提出两个问题:(1)你的学号是奇数吗?(2)你上学时是否经常带手机?要求被调查者背对着调查人员抛掷一枚硬币,如果出现正面,就回答第一问题,否则就回答第二个问题.被调查者不必告诉调查人员自己回答的是哪一个问题,只需回答“是”或“不是”,因为只有被调查者本人知道回答了哪一个问题,所以都如实地做了回答.结果被调查的800人(学号从1至800)中有260人回答了“是”.由此可以估计这800人中经常带手机上学的人数是_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】(A)已知平行四边形
中,
,
,
为
的中点,
.
![]()
(1)求
的长;
(2)设
,
为线段
、
上的动点,且
,求
的最小值.
(B)已知平行四边形
中,
,
,
为
的中点,
.
![]()
(1)求
的长;
(2)设
为线段
上的动点(不包含端点),求
的最小值,以及此时点
的位置.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图(b)所示.
![]()
(1)求证:BC⊥平面ACD;
(2)求几何体D-ABC的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】某网络营销部门为了统计某市网友“双11”在某淘宝店的网购情况,随机抽查了该市当天60名网友的网购金额情况,得到如下数据统计表(如图):
![]()
若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为3:2.
(1)试确定
的值,并补全频率分布直方图;
(2)试营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定5人,若需从这5人中随机选取2人进行问卷调查,则恰好选取1名“网购达人”和1名“非网购达人”的概率是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】(A)已知
,
,
,且函数
的最小正周期为
.
(1)求
的值;
(2)若
,
,
,
,求
的值.
(B)已知
,
,
,且函数
的最小正周期为
.
(1)求
的解析式;
(2)若关于
的方程
,在
内有两个不同的解
,
,求证:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法不正确的是( )
A.
,
为不共线向量,若
,则![]()
B. 若
,
为平面内两个不相等向量,则平面内任意向量
都可以表示为![]()
C. 若
,
,则
与
不一定共线
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l:
与圆O:
相交于A,B两个不同的点,且A
,B
.
(1)当
面积最大时,求m的取值,并求出
的长度.
(2)判断
是否为定值;若是,求出定值的大小;若不是,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,且曲线
的左焦点
在直线
上.
(1)若直线
与曲线
交于
两点,求
的值;
(2)求曲线
的内接矩形的周长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com