科目: 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=2,AA1=6.若E,F分别是棱BB1 , CC1上的点,且BE=B1E,C1F=
CC1 , 则异面直线A1E与AF所成角的余弦值为( ) ![]()
A.﹣ ![]()
B.![]()
C.﹣ ![]()
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】下列函数f(x)中,满足“对任意x1、x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是( )
A.f(x)=(x﹣1)2
B.f(x)=ex
C.f(x)= ![]()
D.f(x)=ln(x+1)
查看答案和解析>>
科目: 来源: 题型:
【题目】经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80﹣2t(件),价格近似满足于
(元).
(Ⅰ)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(Ⅱ)求该种商品的日销售额y的最大值与最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】F1 , F2分别是双曲线x2﹣
=1(b>0)的左、右焦点,过F2的直线l与双曲线的左右两支分别交于A,B两点,若△ABF1是等边三角形,则该双曲线的虚轴长为( )
A.2 ![]()
B.2 ![]()
C.![]()
D.4 ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
. (Ⅰ)当m=8时,求f(﹣4)的值;
(Ⅱ)当m=8且x∈[﹣8,8]时,求|f(x)|的最大值;
(Ⅲ)对任意的实数m∈[0,2],都存在一个最大的正数K(m),使得当x∈[0,K(m)]时,不等式|f(x)|≤2恒成立,求K(m)的最大值以及此时相应的m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列
的前
项和为
,
,
.等 差数列
中,
,且公差
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)是否存在正整数
,使得
?.若存在,求出
的最小值;若 不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数g(x)=x2﹣2x+1+mlnx,(m∈R).
(1)当m=1时,求函数y=g(x)在点(1,0)处的切线方程;
(2)当m=﹣12时,求f(x)的极小值;
(3)若函数y=g(x)在x∈(
,+∞)上的两个不同的数a,b(a<b)处取得极值,记{x}表示大于x的最小整数,求{g(a)}﹣{g(b)}的值(ln2≈0.6931,ln3≈1.0986).
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中正确的是( )
A.“x<﹣1”是“x2﹣x﹣2>0”的必要不充分条件
B.“P且Q”为假,则P假且 Q假
C.命题“ax2﹣2ax+3>0恒成立”是真命题,则实数a的取值范围是0≤a<3
D.命题“若x2﹣3x+2=0,则x=2”的否命题为“若x2﹣3x+2=0,则x≠2”
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
(a>b>0)的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P(4,0),M,N是椭圆C上关于x轴对称的任意两个不同的点,连接PN交椭圆C于另一点E,求直线PN的斜率的取值范围;
(Ⅲ)在(Ⅱ)的条件下,证明直线ME与x轴相交于定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com