科目: 来源: 题型:
【题目】我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?” 意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数有
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左右焦点分别是,椭圆C的上顶点到直线的距离为,过且垂直于x轴的直线与椭圆C相交于M,N两点,
且|MN|=1。
(I)求椭圆的方程;
(II)过点的直线与椭圆C相交于P,Q两点,点),且,求直线的方程。
查看答案和解析>>
科目: 来源: 题型:
【题目】某百货商场举行年终庆典,推出以下两种优惠方案:
方案一:单笔消费每满200元立减50元,可累计;
方案二:单笔消费满200元可参与一次抽奖活动,抽奖规则如下:从装有6个小球(其中3个红球3个白球,它们除颜色外完全相同)的盒子中随机摸出3个小球,若摸到3个红球则按原价的5折付款,若摸到2个红球则按原价的7折付款,若摸到1个红球则按原价的8折付款,若未摸到红球按原价的9折付款。
单笔消费不低于200元的顾客可从中任选一种优惠方案。
(I)某顾客购买一件300元的商品,若他选择优惠方案二,求该顾客最好终支付金额不超过250元的概率。
(II)若某顾客的购物金额为210元,请用所学概率知识分析他选择哪一种优惠方案更划算?
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(限定).
(1)写出曲线的极坐标方程,并求与交点的极坐标;
(2)射线与曲线与分别交于点(异于原点),求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左右焦点分别为, 上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,若交直线于两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】为研究某种图书每册的成本费(元)与印刷数(千册)的关系,收集了一些数据并作了初步处理,得到了下面的散点图及一些统计量的值.
表中, .
(1)根据散点图判断: 与哪一个更适宜作为每册成本费(元)与印刷数(千册)的回归方程类型?(只要求给出判断,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程(回归系数的结果精确到0.01);
(3)若每册书定价为10元,则至少应该印刷多少千册才能使销售利润不低于78840元?(假设能够全部售出,结果精确到1)
(附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为, )
查看答案和解析>>
科目: 来源: 题型:
【题目】在中, , , , 是中点(如图1).将沿折起到图2中的位置,得到四棱锥.
(1)将沿折起的过程中, 平面是否成立?并证明你的结论;
(2)若与平面所成的角为60°,且为锐角三角形,求平面和平面所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com