科目: 来源: 题型:
【题目】如图,在直三棱柱中,,为棱的中点,为棱上一点,.
(1)确定的位置,使得平面 平面,并说明理由;
(2)设二面角的正切值为,,为线段上一点,且与平面所成角的正弦值为,求线段的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,,是直线上的个不同的点(,、,均为非零常数),其中数列为等差数列.
(1)求证:数列是等差数列;
(2)若点是直线上一点,且,求证:;
(3)设,且当时,恒有(和都是不大于的正整数,且)试探索:若为直角坐标原点,在直线上是否存在这样的点,使得成立?请说明你的理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)
经常网购 | 偶尔或不用网购 | 合计 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合计 |
(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.
参考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,将用电量的数据绘制成频率分布直方图如下.
(1)求频率分布直方图中的值并估计这50户用户的平均用电量;
(2)若将用电量在区间内的用户记为类用户,标记为低用电家庭,用电量在区间内的用户记为类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:
①从类用户中任意抽取3户,求恰好有2户打分超过85分的概率;
②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有的把握认为“满意度与用电量高低有关”?
满意 | 不满意 | 合计 | |
类用户 | |||
类用户 | |||
合计 |
附表及公式:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
, .
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设曲线交于点,曲线与轴交于点,求线段的中点到点的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】“克拉茨猜想”又称“猜想”,是德国数学家洛萨克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数,如果是偶数,就将它减半;如果为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.己知正整数经过6次运算后得到1,则的值为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,(为常数,且).
(1)若当时,函数与的图象有且只要一个交点,试确定自然数的值,使得(参考数值,,,);
(2)当时,证明:(其中为自然对数的底数).
查看答案和解析>>
科目: 来源: 题型:
【题目】朱世杰是历史上最伟大的数学家之一,他所著的四元玉鉴卷中“如像招数”五问有如下问题:“今有官司差夫一千八百六十四人筑堤只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日”其大意为:“官府陆续派遣人前往修筑堤坝,第一天派出人,从第二天开始,每天派出的人数比前一天多人,修筑堤坝的每人每天分发大米升,共发出大米升,问修筑堤坝多少天”这个问题中,前天一共应发大米____________升.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com