科目: 来源: 题型:
【题目】某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投资额为零时收益为零.
(1)求a,b的值;
(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数是R上的偶函数,对于都有成立,且,当,且时,都有.则给出下列命题:
①;
②函数图象的一条对称轴为;
③函数在[﹣9,﹣6]上为减函数;④方程在[﹣9,9]上有4个根;
其中正确的命题序号是___________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知小李每次打靶命中靶心的概率都为40%,现采用随机模拟的方法估计小李三次打靶恰有两次命中靶心的概率.先由计算器产生0到9之间取整数值的随机数,指定0,1,2,3表示命中靶心,4,5,6,7,8,9表示未命中靶心,再以每三个随机数为一组,代表三次打靶的结果,经随机模拟产生了如下20组随机数:
321 421 191 925 271 932 800 478
589 663 531 297 396 021 546 388
230 113 507 965
据此估计,小李三次打靶恰有两次命中的概率为( )
A. 0.25 B. 0.30
C. 0.35 D. 0.40
查看答案和解析>>
科目: 来源: 题型:
【题目】养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m,高4m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些?
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线和曲线的极坐标方程;
(2)已知射线(),将射线顺时针方向旋转得到:,且射线与曲线交于两点,射线与曲线交于两点,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知动圆C过定点F(2,0),且与直线x=-2相切,圆心C的轨迹为E,
(1)求圆心C的轨迹E的方程;
(2)若直线l交E与P,Q两点,且线段PQ的中心点坐标(1,1),求|PQ|.
查看答案和解析>>
科目: 来源: 题型:
【题目】对某电子元件进行寿命追踪调查,情况如下:
寿命分组/h | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
个数 | 20 | 30 | 80 | 40 | 30 |
(1)求下表中的x,y;
寿命分组/h | 频数 | 频率 |
100~200 | 20 | 0.10 |
200~300 | 30 | x |
300~400 | 80 | 0.40 |
400~500 | 40 | 0.20 |
500~600 | 30 | y |
合计 | 200 | 1 |
(2)从频率分布直方图估计电子元件寿命的第80百分位数是多少.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数在点处的切线方程为.
(1)求的值;
(2)已知,当时,恒成立,求实数的取值范围;
(3)对于在中的任意一个常数,是否存在正数,使得?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com