科目: 来源: 题型:
【题目】在平面直角坐标系
中,点
在椭圆
:
上.若点
,
,且
.
(1)求椭圆
的离心率;
(2)设椭圆
的焦距为4,
,
是椭圆
上不同的两点,线段
的垂直平分线为直线
,且直线
不与
轴重合.
①若点
,直线
过点
,求直线
的方程;
② 若直线
过点
,且与
轴的交点为
,求
点横坐标的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法:
①函数
的图象和直线
的公共点个数是
,则
的值可能是
;
②若函数
定义域为
且满足
,则它的图象关于
轴对称;
③函数
的值域为
;
④若函数
在
上有零点,则实数
的取值范围是
.
其中正确的序号是_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】近期济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用
表示活动推出的天数,
表示每天使用扫码支付的人次(单位:十人次),统计数据如表
所示:
![]()
根据以上数据,绘制了散点图.
![]()
(1)根据散点图判断,在推广期内,
与
(
均为大于零的常数)哪一个适宜作为扫码支付的人次
关于活动推出天数
的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表
中的数据,建立
关于
的回归方程,并预测活动推出第
天使用扫码支付的 人次;
(3)推广期结束后,为更好的服务乘客,车队随机调查了
人次的乘车支付方式,得到如下结果:
![]()
已知该线路公交车票价
元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受
折优惠,扫码支付的乘客随机优惠,根据调查结果发现:使用扫码支付的乘客中有
名乘客享受
折优惠,有
名乘客享受
折优惠,有
名乘客享受
折优惠.预计该车队每辆车每个月有1万人次乘车,根据所给数据,以事件发生的频率作为相应事件发生的概率,在不考虑其他因素的条件下,按照上述收费标准,试估计该车队一辆车一年的总收入.
参考数据:
![]()
其中![]()
参考公式:
对于一组数据
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】若中心在原点的椭圆
与双曲线
有共同的焦点,且它们的离心率互为倒数,圆
的直径是椭圆
的长轴,C是椭圆的上顶点,动直线AB过C点且与圆
交于A、B两点,CD垂直于AB交椭圆于点D.
![]()
(1)求椭圆
的方程;
(2)求
面积的最大值,并求此时直线AB的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
(1)当
时,求函数
在
上的最大值;
(2)令
,若
在区间
上为单调递增函数,求
的取值范围;
(3)当
时,函数
的图象与
轴交于两点
,且
,又
是
的导函数.若正常数
满足条件
.证明:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com