相关习题
 0  262087  262095  262101  262105  262111  262113  262117  262123  262125  262131  262137  262141  262143  262147  262153  262155  262161  262165  262167  262171  262173  262177  262179  262181  262182  262183  262185  262186  262187  262189  262191  262195  262197  262201  262203  262207  262213  262215  262221  262225  262227  262231  262237  262243  262245  262251  262255  262257  262263  262267  262273  262281  266669 

科目: 来源: 题型:

【题目】已知二次函数为常数且),满足条件,且方程有等根.

1)若恒成立,求实数的取值范围;

2)是否存在实数,使当定义域为时,值域为?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的两个焦点分别为,离心率为,过的直线与椭圆交于两点,且的周长为8.

(1)求椭圆的方程;

(2)直线过点,且与椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数具有以下性质:上是减函数,在上是增函数.

1)若上是增函数,求实数的取值范围;

2)若,求的值域和单调区间.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标坐标系中,曲线的参数方程为为参数),以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

(1)求曲线的普通方程;

(2)若与曲线相切,且与坐标轴交于两点,求以为直径的圆的极坐标方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有2个红球,1个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取2个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:

①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;

②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;

③若取得的2个小球都是红球,则该顾客中得一等奖,奖金是一个10元的红包;

④若取得的2个小球都不是红球,则该顾客中得二等奖,奖金是一个5元的红包;

⑤若取得的2个小球只有1个红球,则该顾客中得三等奖,奖金是一个2元的红包.

抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.

(1)求这20位顾客中获得抽奖机会的人数与抽奖总次数(假定每位获得抽奖机会的顾客都会去抽奖);

(2)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);

(3)分别求在一次抽奖中获得红包奖金10元,5元,2元的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某城市理论预测2014年到2018年人口总数(单位:十万)与年份(用表示)的关系如表所示:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的回归方程

(3)据此估计2019年该城市人口总数.

(参考数据:

参考公式:线性回归方程为,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】已知公差不为零的等差数列满足,且成等比数列.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是,,,.

求图中的值;

根据频率分布直方图,估计这名学生的平均分;

若这名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如表所示,求英语成绩在的人数.

分数段

:5

1:2

1:1

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数x R , e 为自然对数的底数).

判断函数 f x 的单调性与奇偶性;

⑵是否存在实数 t 使不等式对一切的 x R 都成立若存在,求出 t 的值 不存在说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数满足①对于任意,都有;②;③的图像与轴的两个交点之间的距离为4.

1)求的解析式;

2)记

①若为单调函数,求的取值范围;

②记的最小值为,讨论函数零点的个数.

查看答案和解析>>

同步练习册答案