相关习题
 0  262143  262151  262157  262161  262167  262169  262173  262179  262181  262187  262193  262197  262199  262203  262209  262211  262217  262221  262223  262227  262229  262233  262235  262237  262238  262239  262241  262242  262243  262245  262247  262251  262253  262257  262259  262263  262269  262271  262277  262281  262283  262287  262293  262299  262301  262307  262311  262313  262319  262323  262329  262337  266669 

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数,),已知直线的方程为.

(1)设是曲线上的一个动点,当时,求点到直线的距离的最小值;

(2)若曲线上的所有点均在直线的右下方,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.

(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?

对服务好评

对服务不满意

合计

对商品好评

140

对商品不满意

10

合计

200

(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.

①求随机变量X的分布列;

②求X的数学期望和方差.

附:,其中n=a+b+c+d.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若,判断函数的奇偶性,并加以证明

(2)若函数上是增函数,求实数的取值范围;

(3)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中为常数.

(1)当时,讨论的单调性;

(2)当时,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】从某工厂的一个车间抽取某种产品件,产品尺寸(单位:)落在各个小组的频数分布如下表:

数据分组

频数

(1)根据频数分布表,求该产品尺寸落在的概率;

(2)求这件产品尺寸的样本平均数;(同一组中的数据用该组区间的中点值作代表)

(3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布,其中近似为样本平均值近似为样本方差,经过计算得,利用该正态分布,求.

附:①若随机变量服从正态分布,则;②.

查看答案和解析>>

科目: 来源: 题型:

【题目】养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m,高4m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).

(1)分别计算按这两种方案所建的仓库的体积;

(2)分别计算按这两种方案所建的仓库的表面积;

(3)哪个方案更经济些?

查看答案和解析>>

科目: 来源: 题型:

【题目】n是一个正整数,定义n个实数a1a2an的算术平均值为.设集合 M={1232015},对 M的任一非空子集 Z,令αz表示 Z中最大数与最小数之和,那么所有这样的αz的算术平均值为______.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为.以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,求两点间的距离的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于不等式.

1)若该不等式的解集为空集,求函数的最大值;

2)若,该不等式能成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,平面平面,底面为平行四边形,.

(1)求的长;

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案