相关习题
 0  262503  262511  262517  262521  262527  262529  262533  262539  262541  262547  262553  262557  262559  262563  262569  262571  262577  262581  262583  262587  262589  262593  262595  262597  262598  262599  262601  262602  262603  262605  262607  262611  262613  262617  262619  262623  262629  262631  262637  262641  262643  262647  262653  262659  262661  262667  262671  262673  262679  262683  262689  262697  266669 

科目: 来源: 题型:

【题目】小明口袋中有3张10元,3张20元(因纸币有编号认定每张纸币不同),现从中掏出纸币超过45元的方法有_______种;若小明每次掏出纸币的概率是等可能的,不放回地掏出4张,刚好是50元的概率为_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数,且)是定义域为R的奇函数.

1)求t的值;

2)若,求使不等式对一切恒成立的实数k的取值范围;

3)若函数的图象过点,是否存在正数m),使函数上的最大值为0,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设整数模2014互不同余,整数模2014也互不同余.证明:可将重新排列为,使得模4028互不同余.

查看答案和解析>>

科目: 来源: 题型:

【题目】201818日,中共中央国务院隆重举行国家科学技术奖励大会,在科技界引发热烈反响,自主创新正成为引领经济社会发展的强劲动力.某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值y与这种新材料的含量x(单位:克)的关系为:当时,yx的二次函数;当时,测得数据如下表(部分):

x(单位:克)

0

1

2

9

y

0

3

1)求y关于x的函数关系式

2)当该产品中的新材料含量x为何值时,产品的性能指标值最大.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常.排气后,测得车库内的一氧化碳浓度为,继续排气,又测得浓度为,经检测知该地下车库一氧化碳浓度与排气时间存在函数关系:为常数)。

(1)求的值;

(2)若地下车库中一氧化碳浓度不高于为正常,问至少排气多少分钟,这个地下车库中的一氧化碳含量才能达到正常状态?

查看答案和解析>>

科目: 来源: 题型:

【题目】科技改变生活,方便生活.共享单车的使用就是云服务的一种实践,它是指企业与政府合作,为居民出行提供单车共享服务,它符合低碳出行理念,为解决城市出行的最后一公里提供了有力支撑,是共享经济的一种新形态.某校学生社团为研究当地使用共享单车人群的年龄状况,随机抽取了当地名使用共享单车的群众作出调查,所得频率分布直方图如图所示.

1)估计当地共享单车使用者年龄的中位数;

2)若按照分层抽样从年龄在的人群中抽取人,再从这人中随机抽取人调查单车使用体验情况,记抽取的人中年龄在的人数为,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线 与椭圆有且只有一个公共点.

(Ⅰ)求椭圆的方程及点的坐标;

(Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点,且与直线交于点,证明:存在常数,使得,并求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某媒体为调查喜爱娱乐节目A是否与观众性别有关,随机抽取了30名男性和30名女性观众,抽查结果用等高条形图表示如图:

根据该等高条形图,完成下列2×2列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.05的前提下认为喜欢娱乐节目A与观众性别有关?

喜欢节目A

不喜欢节目A

总计

男性观众

女性观众

总计

60

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数有两个不同的零点.

1)求a的范围;

2)证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】设有三个乡镇,分别位于一个矩形的两个顶点MN的中点S处,,现要在该矩形的区域内(含边界),且与MN等距离的一点O处设一个宣讲站,记O点到三个乡镇的距离之和为

1)设,试将L表示为x的函数并写出其定义域;

2)试利用(1)的函数关系式确定宣讲站O的位置,使宣讲站O到三个乡镇的距离之和最小.

查看答案和解析>>

同步练习册答案