科目: 来源: 题型:
【题目】某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝, )的函数解析式;
(2)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 | |||||||
频数 |
以天的各需求量的频率作为各需求量发生的概率.
若花店一天购进枝玫瑰花, 表示当天的利润(单位:元),求的分布列, 数学期望及方差;
若花店一天购进枝或枝玫瑰花,你认为应购进枝还是枝?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地区为了解群众上下班共享单车使用情况,根据年龄按分层抽样的方式调查了该地区50名群众,他们的年龄频数及使用共享单车人数分布如下表:
年龄段 | 20~29 | 30~39 | 40~49 | 50~60 |
频数 | 12 | 18 | 15 | 5 |
经常使用共享单车 | 6 | 12 | 5 | 1 |
(1)由以上统计数据完成下面的列联表,并判断是否有95%的把握认为以40岁为分界点对是否经常使用共享单车有差异?
年龄低于40岁 | 年龄不低于40岁 | 总计 | |
经常使用共享单车 | |||
不经常使用共享单车 | |||
总计 |
附:,.
0.25 | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(2)若采用分层抽样的方式从年龄低于40岁且经常使用共享单车的群众中选出6人,再从这6人中随机抽取2人,求这2人中恰好有1人年龄在30~39岁的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点P是抛物线C:上任意一点,过点P作直线PH⊥x轴,点H为垂足.点M是直线PH上一点,且在抛物线的内部,直线l过点M交抛物线C于A、B两点,且点M是线段AB的中点.
(1)证明:直线l平行于抛物线C在点P处切线;
(2)若|PM|=, 当点P在抛物线C上运动时,△PAB的面积如何变化?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知空间几何体ABCDE中,△BCD与△CDE均是边长为2的等边三角形,△ABC是腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.
(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;
(2)求三棱锥E-ABC的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥P-ABC中,AC=BC=PC=2,AB=PA=PB=2.
(1)证明:PC⊥平面ABC;
(2)若点D在棱AC上,且二面角D-PB-C为30°,求PD与平面PAB所成角的正弦值。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在直角梯形中,,分别是上的点,,且(①).将四边形沿折起,连接(②).在折起的过程中,下列说法中正确的是( )
A.平面
B.四点不可能共面
C.若,则平面平面
D.平面与平面可能垂直
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业生产某种产品,为了提高生产效益,通过引进先进的生产技术和管理方式进行改革,并对改革后该产品的产量x(万件)与原材料消耗量y(吨)及100件产品中合格品与不合格品数量作了记录,以便和改革前作对照分析,以下是记录的数据:
表一:改革后产品的产量和相应的原材料消耗量
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
表二:改革前后定期抽查产品的合格数与不合格数
合格品的数量 | 不合格品的数量 | 合计 | |
改革前 | 90 | 10 | 100 |
改革后 | 85 | 15 | 100 |
合计 | 175 | 25 | 200 |
(1)请根据表一提供数据,用最小二乘法求出y关于x的线性回归方程.
(2)已知改革前生产7万件产品需要6.5吨原材料,根据回归方程预测生产7万件产品能够节省多少原材料?
(3)请根据表二提供的数据,判断是否有90%的把握认为“改革前后生产的产品的合格率有差异”?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com