科目: 来源: 题型:
【题目】在直角坐标系中,圆经过伸缩变换后得到曲线.以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为.
(1)求曲线的直角坐标方程及直线的直角坐标方程;
(2)设点是上一动点,求点到直线的距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆的离心率是,过点的动直线与椭圆相交于两点,当直线与轴平行时,直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)在轴上是否存在异于点的定点,使得直线变化时,总有?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】给定椭圆 C : ,称圆心在原点,半径为的圆是椭圆 C 的“伴随圆”.若椭圆 C 的一个焦点为 F1(, 0) ,其短轴上的一个端点到 F1 的距离为
(1)求椭圆 C 的方程及其“伴随圆”方程;
(2)若倾斜角 45°的直线 l 与椭圆 C 只有一个公共点,且与椭圆 C 的伴随圆相交于 M .N 两点,求弦 MN 的的长;
(3)点 P 是椭圆 C 的伴随圆上一个动点,过点 P 作直线 l1、l2,使得 l1、l2与椭圆 C 都只有一个公共点,判断l1、l2的位置关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,.
(1)若在区间上不是单调函数,求实数的范围;
(2)若对任意,都有恒成立,求实数的取值范围;
(3)当时,设,对任意给定的正实数,曲线上是否存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在轴上?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正三棱柱 ABC A1 B1C1 中, AB 3 , AA1 4 , M 为 AA1 的中点, P 是 BC 上一点,且由 P 沿棱柱侧面经过棱 CC1 到 M 点的最短路线长为 ,设这条最短路线与 CC1 的交点为 N 。求:
(1)该三棱柱的侧面展开图的对角线长;
(2) PC 和 NC 的长;
(3)平面 NMP 和平面 ABC 所成锐二面角大小的正切值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知圆的方程为,圆的方程为,若动圆与圆内切,与圆外切.
(Ⅰ)求动圆圆心的轨迹的方程;
(Ⅱ)过直线上的点作圆的两条切线,设切点分别是,,若直线与轨迹交于,两点,求的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响.对近六年的年宣传费和年销售量()的数据作了初步统计,得到如下数据:
年份 | ||||||
年宣传费(万元) | ||||||
年销售量(吨) |
经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式().对上述数据作了初步处理,得到相关的值如表:
(1)根据所给数据,求关于的回归方程;
(2)已知这种产品的年利润与,的关系为若想在年达到年利润最大,请预测年的宣传费用是多少万元?
附:对于一组数据,,…,,其回归直线中的斜率和截距的最小二乘估计分别为,
查看答案和解析>>
科目: 来源: 题型:
【题目】已知复数 z a bi ,其中 a .b 为实数,i 为虚数单位, 为 z 的共轭复数,且存在非零实数 t ,使成立.
(1)求 2a b 的值;
(2)若| z 2 | 5,求实数 a 的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com