科目: 来源: 题型:
【题目】在中,角, , 所对的边分别为, , ,且.
(Ⅰ)求角的大小;
(Ⅱ)已知, 的面积为,求的周长.
【答案】(Ⅰ).(Ⅱ).
【解析】【试题分析】(I)利用正弦定理和三角形内角和定理化简已知,可求得的值,进而求得的大小.(II)利用余弦定理和三角形的面积公式列方程组求解的的值,进而求得三角形周长.
【试题解析】
(Ⅰ)由及正弦定理得, ,
,∴,
又∵,∴.
又∵,∴.
(Ⅱ)由, ,根据余弦定理得,
由的面积为,得.
所以 ,得,
所以周长.
【题型】解答题
【结束】
18
【题目】为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:
大棚面积(亩) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利润(万元) | 6 | 7 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且与有很强的线性相关关系.
(Ⅰ)求关于的线性回归方程;
(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;
(Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?
参考数据: , .
参考公式: , .
查看答案和解析>>
科目: 来源: 题型:
【题目】 (2017·黄冈质检)如图,在棱长均为2的正四棱锥P-ABCD中,点E为PC的中点,则下列命题正确的是( )
A.BE∥平面PAD,且BE到平面PAD的距离为
B.BE∥平面PAD,且BE到平面PAD的距离为
C.BE与平面PAD不平行,且BE与平面PAD所成的角大于30°
D.BE与平面PAD不平行,且BE与平面PAD所成的角小于30°
查看答案和解析>>
科目: 来源: 题型:
【题目】已知离心率为2的双曲线的一个焦点到一条渐近线的距离为.
(1)求双曲线的方程;
(2)设分别为的左右顶点,为异于一点,直线与分别交轴于两点,求证:以线段为直径的圆经过两个定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的普通方程为,曲线参数方程为(为参数);以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为,.
(1)求的参数方程和的直角坐标方程;
(2)已知是上参数对应的点,为上的点,求中点到直线的距离取得最小值时,点的直角坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆C的圆心C在直线上.
若圆C与y轴的负半轴相切,且该圆截x轴所得的弦长为,求圆C的标准方程;
已知点,圆C的半径为3,且圆心C在第一象限,若圆C上存在点M,使为坐标原点,求圆心C的纵坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com