科目: 来源: 题型:
【题目】在
中,角
,
,
所对的边分别为
,
,
,且
.
(Ⅰ)求角
的大小;
(Ⅱ)已知
,
的面积为
,求
的周长.
【答案】(Ⅰ)
.(Ⅱ)
.
【解析】【试题分析】(I)利用正弦定理和三角形内角和定理化简已知,可求得
的值,进而求得
的大小.(II)利用余弦定理和三角形的面积公式列方程组求解的
的值,进而求得三角形周长.
【试题解析】
(Ⅰ)由
及正弦定理得,
,
,∴
,
又∵
,∴
.
又∵
,∴
.
(Ⅱ)由
,
,根据余弦定理得
,
由
的面积为
,得
.
所以
,得
,
所以
周长
.
【题型】解答题
【结束】
18
【题目】为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:
大棚面积(亩) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利润(万元) | 6 | 7 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且
与
有很强的线性相关关系.
(Ⅰ)求
关于
的线性回归方程;
(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;
(Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?
参考数据:
,
.
参考公式:
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】 (2017·黄冈质检)如图,在棱长均为2的正四棱锥P-ABCD中,点E为PC的中点,则下列命题正确的是( )
![]()
A.BE∥平面PAD,且BE到平面PAD的距离为![]()
B.BE∥平面PAD,且BE到平面PAD的距离为![]()
C.BE与平面PAD不平行,且BE与平面PAD所成的角大于30°
D.BE与平面PAD不平行,且BE与平面PAD所成的角小于30°
查看答案和解析>>
科目: 来源: 题型:
【题目】已知离心率为2的双曲线
的一个焦点
到一条渐近线的距离为
.
(1)求双曲线
的方程;
(2)设
分别为
的左右顶点,
为
异于
一点,直线
与
分别交
轴于
两点,求证:以线段
为直径的圆
经过两个定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的普通方程为
,曲线
参数方程为
(
为参数);以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
,
.
(1)求
的参数方程和
的直角坐标方程;
(2)已知
是
上参数
对应的点,
为
上的点,求
中点
到直线
的距离取得最小值时,点
的直角坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆C的圆心C在直线
上.
若圆C与y轴的负半轴相切,且该圆截x轴所得的弦长为
,求圆C的标准方程;
已知点
,圆C的半径为3,且圆心C在第一象限,若圆C上存在点M,使
为坐标原点
,求圆心C的纵坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com