科目: 来源: 题型:
【题目】如图,把长为6,宽为3的矩形折成正三棱柱
,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱
、
的交点记为
.
![]()
(1)在三棱柱
中,若过
三点做一平面,求截得的几何体
的表面积;
(2)求三棱柱中异面直线
与
所成角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
,圆
.
(Ⅰ)
是抛物线
的焦点,
是抛物线
上的定点,
,求抛物线
的方程;
(Ⅱ)在(Ⅰ)的条件下,过点
的直线
与圆
相切,设直线
交抛物线
于
,
两点,则在
轴上是否存在点
使
?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:
间隔时间x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数
,再求
与实际等候人数y的差,若差值的绝对值都不超过1,则称所求方程是“恰当回归方程”.
(1)从这6组数据中随机选取4组数据,求剩下的2组数据的间隔时间相邻的概率;
(2)若选取的是中间4组数据,求y关于x的线性回归方程
,并判断此方程是否是“恰当回归方程”.
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在长方体
中,
,点E是棱
上的一个动点,若平面
交棱
于点
,给出下列命题:
![]()
①四棱锥
的体积恒为定值;
②存在点
,使得
平面
;
③对于棱
上任意一点
,在棱
上均有相应的点
,使得
平面
;
④存在唯一的点
,使得截面四边形
的周长取得最小值.
其中真命题的是____________.(填写所有正确答案的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】在我国,大学生就业压力日益严峻,伴随着政府政策引导与社会观念的转变,大学生创业意识,就业方向也悄然发生转变.某大学生在国家提供的税收,担保贷款等很多方面的政策扶持下选择加盟某专营店自主创业,该专营店统计了近五年来创收利润数
(单位:万元)与时间
(单位:年)的数据,列表如下:
![]()
(Ⅰ)依据表中给出的数据,是否可用线性回归模型拟合
与
的关系,请计算相关系数
并加以说明(计算结果精确到
).(若
,则线性相关程度很高,可用线性回归模型拟合);
附:相关系数公式![]()
![]()
参考数据
.
(Ⅱ)该专营店为吸引顾客,特推出两种促销方案.
方案一:每满
元可减
元;
方案二:每满
元可抽奖一次,每次中奖的概率都为
,中奖就可以获得
元现金奖励,假设顾客每次抽奖的结果相互独立.
①某位顾客购买了
元的产品,该顾客选择参加两次抽奖,求该顾客获得
元现金奖励的概率.
②某位顾客购买了
元的产品,作为专营店老板,是希望该顾客直接选择返回
元现金,还是选择参加三次抽奖?说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,
,
,
,
,
分别为
,
边的中点,以
为折痕把
折起,使点
到达点
的位置,且
..
![]()
(Ⅰ)证明:
平面
;
(Ⅱ)设
为线段
上动点,求直线
与平面
所成角的正弦值的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】关于圆周率,数学发展史上出现过多很有创意的求法,如著名的蒲丰试验,受其启发,我们也可以通过设计下面的试验来估计
的值,试验步骤如下:①先请高二年级
名同学每人在小卡片上随机写下一个实数对
;②若卡片上的
,
能与
构成锐角三角形,则将此卡片上交;③统计上交的卡片数,记为
;④根据统计数
,
估计
的值.那么可以估计
的值约为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com