科目: 来源: 题型:
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
算得,.见附表:参照附表,得到的正确结论是( )
A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C. 有99%以上的把握认为“爱好该项运动与性别有关”
D. 有99%以上的把握认为“爱好该项运动与性别无关”
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校为鼓励家校互动,与某手机通讯商合作,为教师办理流量套餐.为了解该校教师手机流量使用情况,通过抽样,得到位教师近年每人手机月平均使用流量(单位:)的数据,其频率分布直方图如下:
若将每位教师的手机月平均使用流量分别视为其手机月使用流量,并将频率为概率,回答以下问题.
(Ⅰ) 从该校教师中随机抽取人,求这人中至多有人月使用流量不超过 的概率;
(Ⅱ) 现该通讯商推出三款流量套餐,详情如下:
套餐名称 | 月套餐费(单位:元) | 月套餐流量(单位:) |
这三款套餐都有如下附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值 流量,资费元;如果又超出充值流量,系统就再次自动帮用户充值 流量,资费元/次,依次类推,如果当月流量有剩余,系统将自动清零,无法转入次月使用.
学校欲订购其中一款流量套餐,为教师支付月套餐费,并承担系统自动充值的流量资费的,其余部分由教师个人承担,问学校订购哪一款套餐最经济?说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界已知函数
当,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
若函数在上是以3为上界的有界函数,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】高铁是一种快捷的交通工具,为我们的出行提供了极大的方便。某高铁换乘站设有编号为①,②,③,④,⑤的五个安全出口,若同时开放其中的两个安全出口,疏散名乘客所需的时间如下:
安全出口编号 | ①② | ②③ | ③④ | ④⑤ | ①⑤ |
疏散乘客时间(s) | 120 | 220 | 160 | 140 | 200 |
则疏散乘客最快的一个安全出口的编号是( )
A. ①B. ②C. ④D. ⑤
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:,,分别是椭圆短轴的上下两个端点,是椭圆的左焦点,P是椭圆上异于点,的点,若的边长为4的等边三角形.
写出椭圆的标准方程;
当直线的一个方向向量是时,求以为直径的圆的标准方程;
设点R满足:,,求证:与的面积之比为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加一次抽奖.随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商场对前5天抽奖活动的人数进行统计,y表示第x天参加抽奖活动的人数,得到统计表如下:
x | 1 | 2 | 3 | 4 | 5 |
y | 50 | 60 | 70 | 80 | 100 |
经过进一步统计分析,发现y与x具有线性相关关系.
(1)若从这5天随机抽取两天,求至少有1天参加抽奖人数超过70的概率;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计该活动持续7天,共有多少名顾客参加抽奖?
参考公式及数据:.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知直线的方程为,曲线是以坐标原点为顶点,直线为准线的抛物线.以坐标原点为极点,轴非负半轴为极轴建立极坐标系.
(1)分别求出直线与曲线的极坐标方程:
(2)点是曲线上位于第一象限内的一个动点,点是直线上位于第二象限内的一个动点,且,请求出的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线:的左、右焦点分别是、,左、右两顶点分别是、,弦AB和CD所在直线分别平行于x轴与y轴,线段BA的延长线与线段CD相交于点如图).
⑴若是的一条渐近线的一个方向向量,试求的两渐近线的夹角;
⑵若,,,,试求双曲线的方程;
⑶在⑴的条件下,且,点C与双曲线的顶点不重合,直线和直线与直线l:分别相交于点M和N,试问:以线段MN为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com