科目: 来源: 题型:
【题目】已知抛物线
的焦点到准线的距离为
,直线
与抛物线
交于
,
两点,过这两点分别作抛物线
的切线,且这两条切线相交于点
.
(1)若点
的坐标为
,求
的值;
(2)设线段
的中点为
,过
的直线
与线段
为直径的圆相切,切点为
,且直线
与抛物线
交于
,
两点,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,在等腰梯形
中,
,
,
分别为
,
的中点,
,
为
中点现将四边形
沿
折起,使平面
平面
,得到如图②所示的多面体在图②中,
![]()
(1)证明:
;
(2)求二面角
的余弦值。
查看答案和解析>>
科目: 来源: 题型:
【题目】某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如下表:
年份 | 1 | 2 | 3 | 4 | 5 |
维护费 | 1.1 | 1.6 | 2 | 2.5 | 2.8 |
(1)在这5年中随机抽取两年,求平均每台设备每年的维护费用至少有1年多于2万元的概率;
(2)求
关于
的线性回归方程.若该设备的价格是每台16万元,你认为应该使用满五年换一次设备,还是应该使用满八年换一次设备?请说明理由.
参考公式:用最小二乘法求线性回归方程
的系数公式
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)分别写出直线
的普通方程与曲线
的直角坐标方程;
(2)已知点
,直线
与曲线
相交于
两点,求证:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】某啤酒厂要将一批鲜啤酒用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,运费由厂家承担.若厂家恰能在约定日期(×月×日)将啤酒送到,则城市乙的销售商一次性支付给厂家40万元;若在约定日期前送到,每提前一天销售商将多支付给厂家2万;若在约定日期后送到,每迟到一天销售商将少支付给厂家2万元.为保证啤酒新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送.已知下表内的信息:
汽车行驶路线 | 在不堵车的情况下到达城市乙所需时间(天) | 在堵车的情况下到达城市乙所需时间(天) | 堵车的概率 | 运费(万元) |
公路1 | 1 | 4 |
| 2 |
公路2 | 2 | 3 |
| 1 |
(1)记汽车选择公路1运送啤酒时厂家获得的毛收入为X(单位:万元),求X的分布列和EX;
(2)若
,
,选择哪条公路运送啤酒厂家获得的毛收人更多?
(注:毛收入=销售商支付给厂家的费用-运费).
查看答案和解析>>
科目: 来源: 题型:
【题目】设各项均为正数的数列{an}的前n项和为Sn,满足:对任意的n∈N*,都有an+1+Sn+1=1,又a1
.
(1)求数列{an}的通项公式;
(2)令bn=log2an,求
(n∈N*)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
的焦点到准线的距离为
,直线
与抛物线
交于
,
两点,过这两点分别作抛物线
的切线,且这两条切线相交于点
.
(1)若点
的坐标为
,求
的值;
(2)设线段
的中点为
,过
的直线
与线段
为直径的圆相切,切点为
,且直线
与抛物线
交于
,
两点,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如下表:
年份 | 1 | 2 | 3 | 4 | 5 |
维护费 | 1.1 | 1.6 | 2 | 2.5 | 2.8 |
(1)在这5年中随机抽取两年,求平均每台设备每年的维护费用至少有1年多于2万元的概率;
(2)求
关于
的线性回归方程.若该设备的价格是每台16万元,你认为应该使用满五年换一次设备,还是应该使用满八年换一次设备?请说明理由.
参考公式:用最小二乘法求线性回归方程
的系数公式
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com