科目: 来源: 题型:
【题目】某同学使用某品牌暖水瓶,其内胆规格如图所示.若水瓶内胆壁厚不计,且内胆如图分为①②③④四个部分,它们分别为一个半球、一个大圆柱、一个圆台和一个小圆柱体.若其中圆台部分的体积为
,且水瓶灌满水后盖上瓶塞时水溢出
.记盖上瓶塞后,水瓶的最大盛水量为
,
![]()
(1)求
;
(2)该同学发现:该品牌暖水瓶盛不同体积的热水时,保温效果不同.为了研究保温效果最好时暖水瓶的盛水体积,做以下实验:把盛有最大盛水量
的水的暖水瓶倒出不同体积的水,并记录水瓶内不同体积水在不同时刻的水温,发现水温
(单位:℃)与时刻
满足线性回归方程
,通过计算得到下表:
倒出体积 | 0 | 30 | 60 | 90 | 120 |
拟合结果 |
|
|
|
|
|
倒出体积 | 150 | 180 | 210 | … | 450 |
拟合结果 |
|
|
| … |
|
注:表中倒出体积
(单位:
)是指从最大盛水量中倒出的那部分水的体积.其中:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
令
.对于数据
,可求得回归直线为
,对于数据
,可求得回归直线为
.
(ⅰ)指出
的实际意义,并求出回归直线
的方程(参考数据:
);
(ⅱ)若
与
的交点横坐标即为最佳倒出体积,请问保温瓶约盛多少体积水时(盛水体积保留整数,且
取3.14)保温效果最佳?
附:对于一组数据
,其回归直线
中的斜率和截距的最小二乘估计分别为
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,
,
是
轴上关于原点
对称的两定点,点
满足
,点
的轨迹为曲线
.
(1)求
的方程;
(2)过
的直线与
交于点
,线段
的中点为
,
的中垂线分别与
轴、
轴交于点
,问
是否成立?若成立,求出直线
的方程;若不成立,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国古代著名数学家刘徽的杰作《九章算术注》是中国最宝贵的数学遗产之一,书中记载了他计算圆周率所用的方法.先作一个半径为1的单位圆,然后做其内接正六边形,在此基础上做出内接正
边形,这样正多边形的边逐渐逼近圆周,从而得到圆周率,这种方法称为“刘徽割圆术”.现设单位圆
的内接正
边形的一边为
,点
为劣弧
的中点,则
是内接正
边形的一边,现记
,
,则( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】去年年底,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估.将各连锁店的评估分数按[60,70), [70,80), [80,90), [90,100),分成四组,其频率分布直方图如下图所示,集团公司依据评估得分,将这些连锁店划分为A,B,C,D四个等级,等级评定标准如下表所示.
评估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
评定等级 | D | C | B | A |
![]()
(1)估计该商业集团各连锁店评估得分的众数和平均数;
(2)从评估分数不小于80分的连锁店中任选2家介绍营销经验,求至少选一家A等级的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒 次后才能使纯酒精体积与总溶液的体积之比低于10%.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线C的参数方程为
(
为参数),以直角坐标系的原点o为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程是:![]()
(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程:
(Ⅱ)点P是曲线C上的动点,求点P到直线l距离的最大值与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com