相关习题
 0  265059  265067  265073  265077  265083  265085  265089  265095  265097  265103  265109  265113  265115  265119  265125  265127  265133  265137  265139  265143  265145  265149  265151  265153  265154  265155  265157  265158  265159  265161  265163  265167  265169  265173  265175  265179  265185  265187  265193  265197  265199  265203  265209  265215  265217  265223  265227  265229  265235  265239  265245  265253  266669 

科目: 来源: 题型:

【题目】已知椭圆的离心率为,且以椭圆上的点和长轴两端点为顶点的三角形的面积的最大值为.

1)求椭圆的方程;

2)经过定点的直线交椭圆于不同的两点,点关于轴的对称点为,试证明:直线轴的交点为一个定点,且为原点).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,中点,点上且平面延长线上,,交,且.

1)证明:平面

2)求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】我国新型冠状病毒肺炎疫情期间,以网络购物和网上服务所代表的新兴消费展现出了强大的生命力,新兴消费将成为我国消费增长的新动能.某市为了了解本地居民在20202月至3月两个月网络购物消费情况,在网上随机对1000人做了问卷调查,得如下频数分布表:

网购消费情况(元)

频数

300

400

180

60

60

1)作出这些数据的频率分布直方图,并估计本市居民此期间网络购物的消费平均值;

2)在调查问卷中有一项是填写本人年龄,为研究网购金额和网购人年龄的关系,以网购金额是否超过4000元为标准进行分层抽样,从上述1000人中抽取200人,得到如下列联表,请将表补充完整并根据列联表判断,在此期间是否有95%的把握认为网购金额与网购人年龄有关.

网购不超过4000

网购超过4000

总计

40岁以上

75

100

40岁以下(含40岁)

总计

200

参考公式和数据:.(其中为样本容量)

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】孙子定理是中国古代求解一次同余式组的方法,是数论中一个重要定理,最早可见于中国南北朝时期的数学著作《孙子算经》,年英国来华传教士伟烈亚力将其问题的解法传至欧洲,年英国数学家马西森指出此法符合年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.这个定理讲的是一个关于整除的问题,现有这样一个整除问题:将个整数中能被除余且被除余的数按由小到大的顺序排成一列构成一数列,则此数列的项数是(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】七巧板是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,后清陆以湉《冷庐杂识》卷一中写道近又有七巧图,其式五,其数七,其变化之式多至千余18世纪,七巧板流传到了国外,被誉为东方魔板,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.完整图案为一正方形(如图):五块等腰直角三角形、一块正方形和一块平行四边形,如果在此正方形中随机取一点,那么此点取自阴影部分的概率是(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,且四个顶点构成的四边形的面积是.

1)求椭圆的方程;

2)已知直线经过点,且不垂直于轴,直线与椭圆交于两点,的中点,直线与椭圆交于两点(是坐标原点),若四边形的面积为,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)讨论上的零点个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学有教师400人,其中高中教师240人.为了了解该校教师每天课外锻炼时间,现利用分层抽样的方法从该校教师中随机抽取了100名教师进行调查,统计其每天课外锻炼时间(所有教师每天课外锻炼时间均在分钟内),将统计数据按,…,分成6组,制成频率分布直方图如下:

假设每位教师每天课外锻炼时间相互独立,并称每天锻炼时间小于20分钟为缺乏锻炼.

1)试估计本校教师中缺乏锻炼的人数;

2)若从参与调查,且每天课外锻炼时间在内的该校教师中任取2人,求至少有1名初中教师被选中的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆,直线交椭圆两点,为坐标原点.

1)若直线过椭圆的右焦点,求的面积;

2)若,试问椭圆上是否存在点,使得四边形为平行四边形?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在几何体中,如图,四边形为平行四边形,,平面平面平面

1)若三棱锥的体积为1,求

2)求证:

查看答案和解析>>

同步练习册答案