科目: 来源: 题型:
【题目】已知椭圆上任意一点到其两个焦点
,
的距离之和等于
,且圆
经过椭圆的焦点.
(1)求椭圆的方程;
(2)如图,若直线与圆O相切,且与椭圆相交于A,B两点,直线
与
平行且与椭圆相切于点M(O,M位于直线
的两侧).记
,
的面积分别为
,
,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,底面ABCD为矩形,
,
,侧面SAD是以AD为斜边的等腰直角三角形,且平面
平面ABCD,M,N分别为AD,SC的中点.
(1)求证:平面SAB.
(2)求直线BN与平面SAB所成角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为
,且四个顶点构成的四边形的面积是
.
(1)求椭圆的方程;
(2)已知直线经过点
,且不垂直于
轴,直线
与椭圆
交于
,
两点,
为
的中点,直线
与椭圆
交于
,
两点(
是坐标原点),求四边形
的面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学有教师400人,其中高中教师240人.为了了解该校教师每天课外锻炼时间,现利用分层抽样的方法从该校教师中随机抽取了100名教师进行调查,统计其每天课外锻炼时间(所有教师每天课外锻炼时间均在分钟内),将统计数据按
,
,
,…,
分成6组,制成频率分布直方图如下:假设每位教师每天课外锻炼时间相互独立,并称每天锻炼时间小于20分钟为缺乏锻炼.
(1)试估计本校教师中缺乏锻炼的人数;
(2)从全市高中教师中随机抽取3人,若表示每天课外锻炼时间少于10分钟的人数,以这60名高中教师每天课外锻炼时间的频率代替每名高中教师每天课外锻炼时间发生的概率,求随机变量
的分布列与数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线的虚轴的一个顶点为
,左顶点为
,双曲线
的左、右焦点分别为
,
,点
为线段
上的动点,当
取得最小值和最大值时,
的面积分别为
,
,若
,则双曲线
的离心率为( ).
A.B.
C.
D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:
,圆
:
,一动圆在
轴右侧与
轴相切,同时与圆
相外切,此动圆的圆心轨迹为曲线
,椭圆
与曲线
有相同的焦点.
(1)求曲线的方程;
(2)设曲线与椭圆
相交于第一象限点
,且
,求椭圆
的标准方程;
(3)在(2)的条件下,如果椭圆的左顶点为
,过
且垂直于
轴的直线与椭圆
交于
,
两点,直线
,
与直线
:
分别交于
,
两点,证明:四边形
的对角线的交点是椭圆
的右顶点.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校为了有效地加强高中生自主管理能力,推出了一系列措施,其中自习课时间的自主管理作为重点项目,学校有关处室制定了“高中生自习课时间自主管理方案”.现准备对该“方案”进行调查,并根据调查结果决定是否启用该“方案”,调查人员分别在各个年级随机抽取若干学生对该“方案”进行评分,并将评分分成,
,
,
七组,绘制成如图所示的频率分布直方图.
相关规则为①采用百分制评分,内认定为对该“方案”满意,不低于80分认定为对该“方案”非常满意,60分以下认定为对该“方案”不满意;②学生对“方案”的满意率不低于
即可启用该“方案”;③用样本的频率代替概率.
(1)从该校学生中随机抽取1人,求被抽取的这位同学非常满意该“方案”的概率,并根据频率分布直方图求学生对该“方案”评分的中位数.
(2)根据所学统计知识,判断该校是否启用该“方案”,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com