科目: 来源: 题型:
【题目】已知正四棱锥的侧棱和底面边长相等,在这个正四棱锥的条棱中任取两条,按下列方式定义随机变量的值:
若这两条棱所在的直线相交,则的值是这两条棱所在直线的夹角大小(弧度制);
若这两条棱所在的直线平行,则;
若这两条棱所在的直线异面,则的值是这两条棱所在直线所成角的大小(弧度制).
(1)求的值;
(2)求随机变量的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列满足奇数项成等差,公差为,偶数项成等比,公比为,且数列的前项和为,,.
若,.
①求数列的通项公式;
②若,求正整数的值;
若,,对任意给定的,是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,其中,,为自然对数的底数.
若,,①若函数单调递增,求实数的取值范围;②若对任意,恒成立,求实数的取值范围.
若,且存在两个极值点,,求证:.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左顶点为,左、右焦点分别为,离心率为,是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点.
(1)求椭圆方程;
(2)若直线与椭圆交于另一点,且,求点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正四棱锥的侧棱和底面边长相等,在这个正四棱锥的条棱中任取两条,按下列方式定义随机变量的值:
若这两条棱所在的直线相交,则的值是这两条棱所在直线的夹角大小(弧度制);
若这两条棱所在的直线平行,则;
若这两条棱所在的直线异面,则的值是这两条棱所在直线所成角的大小(弧度制).
(1)求的值;
(2)求随机变量的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列满足奇数项成等差,公差为,偶数项成等比,公比为,且数列的前项和为,,.
若,.
①求数列的通项公式;
②若,求正整数的值;
若,,对任意给定的,是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,其中,,为自然对数的底数.
若,,①若函数单调递增,求实数的取值范围;②若对任意,恒成立,求实数的取值范围.
若,且存在两个极值点,,求证:.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左顶点为,左、右焦点分别为,离心率为,是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点.
(1)求椭圆方程;
(2)若直线与椭圆交于另一点,且,求点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在平面直角坐标系中,
曲线(为参数),(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线(且).
(1)求与的极坐标方程;
(2)若与相交于点,与相交于点,当为何值时,最大,并求最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某人经营淡水池塘养草鱼,根据过去期的养殖档案,该池塘的养殖重量(百斤)都在百斤以上,其中不足百斤的有期,不低于百斤且不超过百斤的有期,超过百斤的有期.根据统计,该池塘的草鱼重量的增加量(百斤)与使用某种饵料的质量(百斤)之间的关系如图所示.
(1)根据数据可知与具有线性相关关系,请建立关于的回归方程;如果此人设想使用某种饵料百斤时,草鱼重量的增加量须多于百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.
(2)养鱼的池塘对水质含氧量与新鲜度要求较高,某商家为该养殖户提供收费服务,即提供不超过台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量有如下关系:
鱼的重量(单位:百斤) | |||
冲水机只需运行台数 |
若某台增氧冲水机运行,则商家每期可获利千元;若某台冲水机未运行,则商家每期亏损千元.视频率为概率,商家欲使每期冲水机总利润的均值达到最大,应提供几台增氧冲水机?
附:对于一组数据,其回归方程的斜率和截距的最小二乘估计公式分别为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com