精英家教网 > 试题搜索列表 >如图,已知抛物线y=x2+bx与直线y=

如图,已知抛物线y=x2+bx与直线y=答案解析

科目:czsx 来源: 题型:解答题

如图,已知抛物线y=数学公式x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.
(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.

查看答案和解析>>

科目:czsx 来源:2013年浙江省丽水市中考数学试卷(解析版) 题型:解答题

如图,已知抛物线y=x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.
(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•丽水)如图,已知抛物线y=
12
x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.
(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.

查看答案和解析>>

科目:czsx 来源: 题型:

21、如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为(  )

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•泰顺县模拟)如图,已知抛物线y=-x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式及顶点M坐标;
(2)在抛物线的对称轴上找到点P,使得△PAC的周长最小,并求出点P的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(精英家教网0,2),AB=4.
(1)求抛物线的解析式;
(2)若S△APO=
32
,求矩形ABCD的面积.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0),且x1+x2=4精英家教网
x1
x2
=
1
3

(1)分别求出A,B两点的坐标;
(2)求此抛物线的函数解析式;
(3)设此抛物线与y轴的交点为C,过
OE
3
=
3
4
作直线l与抛物线交于另一点D(点D在x轴上方),连接AC,CB,BD,DA,当四边形ACBD的面积为4时,求点D的坐标和直线l的函数解析式.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴的相交于点A和点B(3,0),与y轴交于点C,且S△BOC=
92
精英家教网
(1)求抛物线和直线BC的函数解析式;
(2)设P直线BC上的动点、Q是抛物线上的动点.问:是否存在以C、P、Q为顶点的三角形,使得它与△BOC相似?若存在,请直接写出线段PQ的长;若不存在,请说明理由;
(3)在上述条件下,把直线BC绕C旋转.当直线与抛物线只有一个公共点时,求OP的最小值.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,已知抛物线y=-x2+bx+c经过点A(-1,0)和C(0,4).
(1)求这条抛物线的解析式;
(2)直线y=x+1与抛物线相交于A、D两点,点P是抛物线上一个动点,点P的横坐标是m,且-1<m<3,设△ADP的面积为S,求S的最大值及对应的m值;
(3)点M是直线AD上一动点,直接写出使△ACM为等腰三角形的点M的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为Α(1,0),B(3,0),
(1)求此抛物线的解析式;
(2)设此抛物线的顶点为D,与y轴的交点为C,试求四边形ΑBCD的面积.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y=-x2+bx+c过点A(2,0),对称轴为y轴,顶点为P

(1)求该抛物线的解析式,写出其顶点P的坐标,请在图①中画出大致的图象;
(2)如图②,将此抛物线向右平移m个单位,再向下平移m个单位(m>O).平移后的抛物线与直线y=1相交于M、N两点,若2≤MN≤4.求m的取值范围;
(3)如图③,若此抛物线在(2)的平移方式下,新抛物线的顶点为B点,与y轴的交点为C.若∠OBC=45°,试求m的值.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴交于点A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).
(1)求抛物线的解析式;
(2)求出该抛物线的对称轴及顶点D的坐标;
(3)若点P在抛物线上运动(点P异于点D),当△PAB的面积和△DAB面积相等时,求点P的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0),精英家教网x1+x2=4,
x1
x2
=
1
3

(1)求此抛物线的解析式;
(2)设此抛物线与y轴的交点为C,过点B、C作直线,求此直线的解析式;
(3)求△ABC的面积.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4)
(1)求这条抛物线的解析式;
(2)设此抛物线与直线y=x相交于点A,B(点B在点A的右侧),平行于y轴的直线x=m(0<m<
5
+1)与抛物线交于点M,与直线y=x交于点N,交x轴于点P,求线段MN的长(用含m的代数式表示);
(3)在条件(2)的情况下,连接OM、BM,是否存在m的值,使△BOM的面积S最大?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0).另一个交点为A,且与y轴交于点C(0,5).
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的一个动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P在x轴上一点,以C、B、P为顶点的三角形与△CMN相似,求点P的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,已知抛物线 y=-x2+bx+c过点A(2,0),对称轴为y轴,顶点为P.
(1)求该抛物线的表达式,写出其顶点P的坐标,并画出其大致图象;
(2)把该抛物线先向右平移m个单位,再向下平移m个单位(m>0 ),记新抛物线的顶点为B,与y轴的交点为C.
①试用m的代数式表示点B、点C的坐标;  ②若∠OBC=45°,试求m的值.

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•大兴区一模)如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,求抛物线的解析式;
(3)在(2)条件下,点P(不与A、C重合)是抛物线上的一点,点M是y轴上一点,当△BPM是等腰直角三角形时,求点M的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,已知抛物线y=-x2+bx+c过点C,与x轴交于A,B两点,与y轴交于D点.
(1)求抛物线的解析式;
(2)设抛物线的顶点为M,求四边形ABMD的面积;
(3)设点P(m1,n1),Q(m2,n2)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,请直接写出m1+m2的值.

查看答案和解析>>