4.(2009浙江卷文)已知向量,.若向量满足,,则 ( )
A. B. C. D.
[命题意图]此题主要考查了平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用.
[解析]不妨设,则,对于,则有;又,则有,则有
3.(2009浙江卷理)设向量,满足:,,.以,,的模为边长构成三角形,则它的边与半径为的圆的公共点个数最多为 ( ) .
A. B. C. D.
答案:C
[解析]对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.
2.(2009广东卷理)一质点受到平面上的三个力(单位:牛顿)的作用而处于平衡状态.已知,成角,且,的大小分别为2和4,则的大小为
A. 6 B. 2 C. D.
[解析],所以,选D.
1.(2009年广东卷文)已知平面向量a= ,b=, 则向量
A平行于轴 B.平行于第一、三象限的角平分线
C.平行于轴 D.平行于第二、四象限的角平分线
[答案]
[解析],由及向量的性质可知,C正确.
2.(2009湖北卷文)(本小题满分12分)
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。
(Ⅰ)将y表示为x的函数:
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
解:(1)如图,设矩形的另一边长为a m
则-45x-180(x-2)+180·2a=225x+360a-360
由已知xa=360,得a=,
所以y=225x+ .
(II)
.当且仅当225x=时,等号成立.
即当x=24m时,修建围墙的总费用最小,最小总费用是10440元. .
8.(2009上海卷文) 已知实数x、y满足 则目标函数z=x-2y的最小值是___________.
[答案]-9
[解析]画出满足不等式组的可行域如右图,目标函数化为:-z,画直线及其平行线,当此直线经过点A时,-z的值最大,z的值最小,A点坐标为(3,6),所以,z的最小值为:3-2×6=-9。
7.(2009年上海卷理)若行列式中,元素4的代数余子式大于0,
则x满足的条件是________________________ .
[答案]
[解析]依题意,得: (-1)2×(9x-24)>0,解得: .
6.(2009山东卷文)某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为__________元. .
[解析]:设甲种设备需要生产天, 乙种设备需要生产天, 该公司所需租赁费为元,则,甲、乙两种设备生产A,B两类产品的情况为下表所示:
产品 设备 |
A类产品 (件)(≥50) |
B类产品 (件)(≥140) |
租赁费 (元) |
甲设备 |
5
|
10 |
200 |
乙设备 |
6
|
20
|
300 |
则满足的关系为即:, .
作出不等式表示的平面区域,当对应的直线过两直线的交点(4,5)时,目标函数取得最低为2300元. .
答案:2300
[命题立意]:本题是线性规划的实际应用问题,需要通过审题理解题意,找出各量之间的关系,最好是列成表格,找出线性约束条件,写出所研究的目标函数,通过数形结合解答问题..
5.(2009山东卷理)不等式的解集为 . .
[解析]:原不等式等价于不等式组①或②
或③不等式组①无解,由②得,由③得,综上得,所以原不等式的解集为.
答案:
[命题立意]:本题考查了含有多个绝对值号的不等式的解法,需要根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案.本题涉及到分类讨论的数学思想.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com