科目: 来源: 题型:
【题目】问题的提出:
如果点
是锐角
内一动点,如何确定一个位置,使点
到△ABC的三顶点的距离之和
的值为最小?
(1)问题的转化:
把
绕点
逆时针旋转
得到
,连接
,这样就把确定
的最小值的问题转化成确定
的最小值的问题了,请你利用图1证明:
.
![]()
(2)问题的解决:
当点
到锐角
的三顶点的距离之和
的值为最小时,求
的度数.
问题的延伸:
(3)如图2所示,在钝角
中,
,
,
,点
是这个三角形内一动点,请你利用以上方法,求点
到这个三角形各顶点的距离之和的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点
,
,
,点
是三角形
边
上任意一点,三角形经过平移后得到三角形
,点
的对应点为
.
![]()
(1)直接写出点
的坐标______________.
(2)画出三角形
平移后的三角形
.
(3)在
轴上是否存在一点
,使三角形
的面积等于三角形
面积的
,若存在,请求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司计划购买若干台打印机,现从两家商场了解到同一种型号的打印机报价均为1000元,并且多买都有一定的优惠.各商场的优惠条件如下表所示:
商场 | 优惠条件 |
甲商场 | 第一台按原价收费,其余的每台优惠15% |
乙商场 | 每台优惠10% |
(1)设公司购买
台打印机,选择甲商场时,所需费用为
元,选择乙商场时,所需费用为
元,请分别求出
,
与
之间的关系式.
(2)什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?
(3)现从甲乙两商场一共买入10台打印机,已知甲商场的运费为每台15元,乙商场的运费为每台20元,设总运费为
元,从甲商场购买
台打印机,在甲商场的库存只有4台的情况下,怎样购买,总运费最少?最少运费是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】小丽想用一块面积为
的正方形纸片,沿着边的方向裁出一块面积为
的长方形纸片,使它的长宽之比为4:3,他不知道能否裁的出来,正在发愁,请你用所学知识帮小丽分析,能否裁出符合要求的纸片.
查看答案和解析>>
科目: 来源: 题型:
【题目】某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20 m和11 m的矩形大厅内修建一个60 m2的矩形健身房ABCD.该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/m2,新建(含装修)墙壁的费用为80元/m2.设健身房的高为3 m,一面旧墙壁AB的长为x m,修建健身房墙壁的总投入为y元.
![]()
(1)求y与x的函数关系式;
(2)为了合理利用大厅,要求自变量x必须满足条件:8≤x≤12,当投入的资金为4800元时,问利用旧墙壁的总长度为多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )![]()
A.4个
B.3个
C.2个
D.1个
查看答案和解析>>
科目: 来源: 题型:
【题目】公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数
,导致了第一次数学危机.
是无理数的证明如下:
假设
是有理数,那么它可以表示成
(
与
是互质的两个正整数).于是
,所以,
.于是
是偶数,进而
是偶数.从而可设
,所以
,
,于是可得
也是偶数.这与“
与
是互质的两个正整数”矛盾,从而可知“
是有理数”的假设不成立,所以,
是无理数.这种证明“
是无理数”的方法是( )
A.综合法B.反证法C.举反例法D.数学归纳法
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com