科目: 来源: 题型:
【题目】(1)操作发现:
如图①'在正方形ABCD中,过A点有直线AP,点B关于AP的对称点为E,连接DE交AP于点F,当∠BAP=20°时,则∠AFD= °;当∠BAP=α°(0<α<45°)时,则∠AFD= °;猜想线段DF, EF, AF之间的数量关系:DF-EF= AF(填系数);
(2)数学思考:
如图②,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他条件不变,则∠AFD= °;线段DF, EF, AF之间的数量关系是否发生改变,若发生改变,请写出数量关系并说明理由;
(3)类比探究:
如图③,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他条件不变,则∠AFD= °;请直接写出线段DF,EF,AF之间的数量关系: .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】尺规作图:作点A关于直线l的对称点A'.
已知:直线l和l外一点A.
求作:点A关于l的对称点A'.
作法:①在l上任取一点P,以点P为圆心,PA长为半径作孤,交l于点B;②以点B为圆心,AB长为半径作弧,交弧AB于点A'. 点A'就是所求作的对称点.
由步骤①,得________
由步骤②,得________
将横线上的内容填写完整,并说明点A与A'关于直线l对称的理由________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图
![]()
(1)如图1,学校A,B在道路MN的异侧.在MN上建公交站P,使得P到A,B的距离相等。利用尺规作图确定P的位置.
(2)如图2,学校C,D在道路MN的同侧,在MN上建公交站Q,使得Q到C,D的距离的和最短.利用网格确定Q的位置.
查看答案和解析>>
科目: 来源: 题型:
【题目】商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=
,且其日销售量y(kg)与时间t(天)的关系如表:
时间t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
日销售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?
(2)问哪一天的销售利润最大?最大日销售利润为多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形ABCD中,E是边AB上的任意一点(不与点A,B重合),连接DE,作点A关于直线DE的对称点为F,连接EF并延长交BC于点G.
(1)依题意补全图形,连接DG,求∠EDG的度数;
(2)过点E作EH⊥DE交DG的延长线于点H,连接BH.线段BH与AE有怎样的数量关系,请写出结论并证明.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,∠1=∠2,AB=AD,点E在边BC上,∠C=∠AED,AB与DE交于点O.
![]()
(1)求证:△ABC≌△ADE;
(2)当∠1=40°时,求∠BED的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD是矩形,对角线AC的垂直平分线EF交AC于O,分别交BC、AD于点E、F.
(1)求证:四边形AECF是菱形;
(2)若AB=4,BC=8,求EC的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】求证:对角线互相平分的四边形是平行四边形.
小明同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程:
已知:如图,在四边形ABCD中,AC、BD相交于点O, .
求证: .
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com