科目: 来源: 题型:
【题目】如图,梯形ABCD中, AD// BC, ∠B=90°, AD=2, BC=5,E是AB上一点,将△BCE沿着直线CE翻折,点B恰好与点D重合,则BE=__
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
![]()
(1)本次调查的学生共有 人,在扇形统计图中,m的值是 ;
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在梯形ABCD中,AD∥BC,AB=CD,BC=10,对角线AC、BD相交于点O,且AC⊥BD,设AD=x,△AOB的面积为y.
(1)求∠DBC的度数;
(2)求y关于x的函数解析式,并写出自变量x的取值范围;
(3)如图1,设点P、Q分别是边BC、AB的中点,分别联结OP,OQ,PQ.如果△OPQ是等腰三角形,求AD的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面内,两条直线L1,L2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线L1,L2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有_____个
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:
![]()
(概念认识)
已知点P和图形M,点B是图形M上任意一点,我们把线段PB长度的最小值叫做点P与图形M之间的距离.
例如,以点M为圆心,1cm为半径画圆如图1,那么点M到该圆的距离等于1cm;若点N是圆上一点,那么点N到该圆的距离等于0cm;连接MN,若点Q为线段MN中点,那么点Q到该圆的距离等于0.5cm,反过来,若点P到已知点M的距离等于1cm,那么满足条件的所有点P就构成了以点M为圆心,1cm为半径的圆.
(初步运用)
(1)如图2,若点P到已知直线m的距离等于1cm,请画出满足条件的所有点P.
(深入探究)
(2)如图3,若点P到已知线段的距离等于1cm,请画出满足条件的所有点P.
(3)如图4,若点P到已知正方形的距离等于1cm,请画出满足条件的所有点P.
查看答案和解析>>
科目: 来源: 题型:
【题目】小莉和她爸爸两人沿长江边扬子江步道匀速跑步,他们从渡江胜利纪念馆同时出发,终点是绿博园.已知小莉比她爸爸每步少跑
,两人的运动手环记录时间和步数如下:
出发 | 途中 | 结束 | |
时间 |
|
|
|
小莉的步数 | 1308 | 3183 | 8808 |
出发 | 途中 | 结束 | |
时间 |
|
|
|
爸爸的步数 | 2168 | 4168 |
|
(1)表格中
表示的结束时间为 ,
;
(2)小莉和她爸爸两人每步分别跑多少米?
(3)渡江胜利纪念馆到绿博园的路程是多少米?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点O在直线AB上,OC、OD是两条射线,OC⊥OD,射线OE平分∠BOC.
![]()
(1)若∠DOE=150°,求∠AOC的度数.
(2)若∠DOE=α,则∠AOC= .(请用含α的代数式表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com