科目: 来源: 题型:
【题目】能够判别一个四边形是菱形的条件是( )
A. 一组对角相等且一条对角线平分这组对角 B. 对角线互相平分
C. 对角线互相垂直且相等 D. 对角线相等且互相平分
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线与轴交于点,与轴交于点、,点坐标为.
求该抛物线的解析式;
抛物线的顶点为,在轴上找一点,使最小,并求出点的坐标;
点是线段上的动点,过点作,交于点,连接.当的面积最大时,求点的坐标;
若平行于轴的动直线与该抛物线交于点,与直线交于点,点的坐标为.问:是否存在这样的直线,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子,柱子顶端处装上喷头,由处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知米,喷出的水流的最高点距水平面的高度是米,离柱子的距离为米.
求这条抛物线的解析式;
若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点.
(1)连接DM并延长交BC于N,求证:CN=AD;
(2)求证:△BMD为等腰直角三角形;
(3)将△ADE绕点A逆时针旋转90°时(如图②所示位置),其它条件不变,△BMD为等腰直角三角形的结论是否仍成立?若成立,请证明:若不成立,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在下面直角坐标系中,已知,,三点,其中、、满足关系式,.
(1)求、、的值;
(2)如果在第二象限内有一点,请用含的式子表示四边形的面积;
(3)在(2)的条件下,是否存在点,使四边形的面积与的面积相等?若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】下图是二次函数的图象,其顶点坐标为.
求出图象与轴的交点,的坐标;
在二次函数的图象上是否存在点,使?若存在,求出点的坐标;若不存在,请说明理由;
将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】高尔夫球手基础的高尔夫球的运动路线是一条抛物线,当球水平运动了时达到最高点.落球点比击球点的海拔低,水平距离为.
建立适当的坐标系,求高度关于水平距离的二次函数式;
与击球点相比,运动到最高点时有多高?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2 .
(1)在图中画出△A1B1C1和△A2B2C2 ;
(2)点A2的坐标为 ;
(3)求△ABC的周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠A=38°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com