科目: 来源: 题型:
【题目】已知点A、E、F、C在一条直线上,AE=CF,过点E、F分别作DE⊥AC,BF⊥AC,且AB=CD.连接BD,交AC于点O.
(1)如图1,求证:BF=DE.
(2)将△DEC沿AC方向平移到如图2的位置,其余条件不变,若BF=3cm,请直接写出DE的长是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣1,3)、B(﹣5,1)、C(﹣2,1).
(1)△ABC的面积为______.
(2)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1的坐标.
(3)请说明△A2B2C2是由△A1B1C1经过怎样的变换得到的?
查看答案和解析>>
科目: 来源: 题型:
【题目】(问题背景)
如图1,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图2),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE= CD,从而得出结论:AC+BC=CD
(简单应用)
(1)在图1中,若AC=3, CD=,则AB= .
(2)如图3,AB是⊙O的直径,点C、D在⊙O上,∠C=45°,若AB=13,BC=12,求CD的长.
(拓展规律)
(3)如图4,∠ACB=∠ADB=90°,AD=BD,若AC=m,CD=n,则BC的长为 .(用含m,n的代数式表示)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形ABCD中,AB=5,AD=a(a>5).点P在以A为圆心、AB长为半径的⊙A上,且在矩形ABCD的内部,P到AD、CD的距离PE、PF相等.
(1)若a =7,求AE长;
(2)若⊙A上满足条件的点P只有一个,求a的值;
(3)若⊙A上满足条件的点P有两个,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形OBCD中的三个顶点在⊙O上,点A是优弧BD上的一个动点(不与点B、D重合).
(1)当圆心O在∠BAD内部,∠ABO+∠ADO=50°时,∠A = °;
(2)当圆心O在∠BAD内部,四边形OBCD为平行四边形时,求∠C的度数;
(3)当圆心O在∠BAD外部,四边形OBCD为平行四边形时,请直接写出∠ABO与∠ADO的数量关系.
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与探究
如图所示:点和点分别在射线和射线上运动(点和点不与点重合),,是的平分线,是在顶点处的外角平分线,的反向延长线与交于点.试回答下列问题:
(1)若,则_________,若,则_________.
(2)设,用表示的度数,则__________.
(3)试猜想,点和点在运动过程中,的度数是否发生变化?若变化,请求出变化范围;若不变,请给出证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2i=﹣i,i4=(i2)2=(﹣1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4ni=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.
计算:(1)i.i2.i3.i4
(2)i+i2+i3+i4+…+i2017+i2018.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在中,于E,,D是AE上的一点,且,连接BD,CD.
试判断BD与AC的位置关系和数量关系,并说明理由;
如图2,若将绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;
如图3,若将中的等腰直角三角形都换成等边三角形,其他条件不变.
试猜想BD与AC的数量关系,请直接写出结论;
你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com