科目: 来源: 题型:
【题目】某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | 0 | ﹣1 | 0 | 3 | … |
接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与边BC交于点D,与边AC交于点E,连接AD,且AD平分∠BAC.
(1)试判断BC与⊙O的位置关系,并说明理由;
(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,⊙O是正方形ABCD的外接圆,P是⊙O上不与A、B重合的任意一点,则∠APB等于( )
A.45° B.60° C.45° 或135° D.60° 或120°
查看答案和解析>>
科目: 来源: 题型:
【题目】关于二次函数y=x2+2x+3的图象有以下说法:其中正确的个数是( )
①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y轴的直线;③它与x轴没有公共点;④它与y轴的交点坐标为(3,0).
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】我们定义:把叫做函数的伴随函数.比如:就是的伴随函数.数形结合是学习函数的一种重要方法,对于二次函数(的常数),若点在函数的图像上,则点(,)也在其图像上,即从数的角度可以知道它的图像关于轴对称.解答下列问题:
(1)的图像关于 轴对称;
(2)①直接写出函数的伴随函数的表达式 ;
②在如图①所示的平面直角坐标系中画出的伴随函数的大致图像;
(3)若直线与的伴随函数图像交于、两点(点A在点B的上方),连接、,且△ABO的面积为12,求的值;
(4)若直线(不平行于y轴)与(的常数)的伴随函数图像交于、两点(点、分别在第一、四象限),且,试问、两点的纵坐标的积是否为常数?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,在半径为6的扇形AOB中,,点C是弧AB上的一个动点(不与点、重合),、,垂足分别为D、E.
(1)①当时,线段 ;
②当的度数= °时,四边形成为菱形;
(2)试说明:四边形的四个顶点在同一个圆上;
(3)如图②,过点作,垂足为,连接,随着点的运动,在△中是否存在保持不变的角?如果存在,请指出这个角并求出它的度数;如果不存在,请说明理由;
(4)在(3)条件下,若点从点运动到点,则点的运动路径长为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.
(1)试判断FG与⊙O的位置关系,并说明理由;
(2)若AC=6,CD=5,求FG的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD于点E、F.
(1)求证:四边形DEBF是平行四边形;
(2)当四边形DEBF是菱形时,求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com