科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,AC为弦,点D是弧BC的中点,过点D作⊙O的切线交AC的延长线于点E.
(1)判断DE与AE的位置关系,并说明理由;
(2)求证:AB=AE+CE.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC与点D,过点D作⊙O的切线EF,交AC于点E,交AB的延长线于点F.
求证:(1)BD=CD;
(2)∠BAC=2∠EDC.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.
(1)请判断AD与BC的位置关系,并说明理由;
(2)若BC=6,ED=2,求AE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知等边△ABC.
(1)请用圆规和直尺作△ABC的内切圆(要求保留作图痕迹,不必写作法和证明);
(2)若等边△ABC边长为2,求△ABC的内切圆的半径.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点P是以C(﹣,)为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)求出点A,C,D的坐标;
(2)如图(1),在抛物线对称轴上找一点E,使得△CBE的周长最小,求点E的坐标;
(3)如图(2),作垂直x轴的直线,在第二象限交直线AC于点M,交抛物线于点N,求当MN有最大值时N点坐标?并求出MN最大值是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,用一块长为50cm、宽为30cm的长方形铁片制作一个无盖的盒子,若在铁片的四个角截去四个相同的小正方形,设小正方形的边长为xcm.
(1)底面的长AB= cm,宽BC= cm(用含x的代数式表示)
(2)当做成盒子的底面积为300cm2时,求该盒子的容积.
(3)该盒子的侧面积S是否存在最大的情况?若存在,求出x的值及最大值是多少?若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;
(2)求支柱的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知x2+(a+3)x+a+1=0是关于x的一元二次方程.
(1)求证:方程总有两个不相等的实数根;
(2)若方程的一个实数根为1,求实数a的值和另一个实数根.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com