科目: 来源: 题型:
【题目】如图,抛物线与直线交于A,B两点,交x轴与D,C两点,连接AC,已知A(0,3),C(3,0).(1)抛物线的解析式__;(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止.若使点M在整个运动中用时最少,则点E的坐标__.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1是一款优雅且稳定的抛物线型落地灯,防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.86米,点最高点C距灯柱的水平距离为1.6米,灯柱AB及支架的相关数据如图2所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE为__米.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在4×4的网格中,每一个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,以O为坐标原点建立如图所示的平面直角坐标系.若抛物线y=x2+bx+c的图象至少经过图中(4×4的网格中)的三个格点,并且至少一个格点在x轴上,则符合要求的抛物线一定不经过的格点坐标为( )
A.(1,3)B.(2,3)C.(1,4)D.(2,4)
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,先将抛物线y=2x2﹣4x关于y轴作轴对称变换,再将所得的抛物线,绕它的顶点旋转180°,那么经两次变换后所得的新抛物线的函数表达式为( )
A.y=﹣2x﹣4xB.y=﹣2x+4x
C.y=﹣2x﹣4x﹣4D.y=﹣2x+4x+4
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,点A的坐标为(0,1),取一点B(b,0),连接AB,作线段AB的垂直平分线,过点B作X轴的垂线,记,的交点为P。
(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹)。
(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来,发现:这些点P竟然在一条曲线L上。
①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线。
②设点P到x轴,y轴的距离分别为,,求+的范围。当+=8时,求点P的坐标。
③将曲线在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长度的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长度的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂设计了一款成本为20元∕件的公益用品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元∕件) | … | 30 | 40 | 50 | 60 | … |
每天销售量y(件) | … | 500 | 400 | 300 | 200 | … |
(1)认真分析上表中的数据,用你所学过的函数知识确定一个满足这些数据的y与x的函数关系,并求出函数关系式.
(2)设该厂试销该公益品每天获得的利润为w元,当销售单价x定为多少时,w有最大值?最大利润是多少?
(3)当地民政部门规定,若该厂销售此公益品单价不低于成本价且不超过46元/件时,该厂每销售一件此公益品,国家就补贴该厂a元利润(a>4)。设日销售利润为m元,公司通过销售记录发现,m始终随销售单价x的增大而增大,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知□ABCD的两边AB、BC的长是关于x的一元二次方程方程的两个实数根.
(1)试说明:无论m取何值,原方程总有两个实数根;
(2)当m为何值时,□ABCD是菱形?求出这时菱形的边长;
(3)若AB﹦2,求BC的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线与x轴交于A(3,0)、B(1,0),与y轴交于点C(0,3)。
(1)求抛物线的解析式;
(2)若点D(0,1),点P是抛物线上的动点,且△PCD是以CD为底的等腰三角形,求点P的坐标。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线与x轴交于A(-1,0),B(5,0)两点,直线与y轴交于点C,与x轴交于点D。点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴与点F,交直线CD于点E。设点P的横坐标为m。
(1)求抛物线的解析式;
(2)若PF=5EF,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com