相关习题
 0  363689  363697  363703  363707  363713  363715  363719  363725  363727  363733  363739  363743  363745  363749  363755  363757  363763  363767  363769  363773  363775  363779  363781  363783  363784  363785  363787  363788  363789  363791  363793  363797  363799  363803  363805  363809  363815  363817  363823  363827  363829  363833  363839  363845  363847  363853  363857  363859  363865  363869  363875  363883  366461 

科目: 来源: 题型:

【题目】用适当的方法解下列一元二次方程

(1) (2x-1)2=25

(2) 3x2-6x-1=0

(3) x2-4x-396=0

(4) (2-3x)+(3x-2)2=0

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一段抛物线:,记为,它与轴交于两点:将旋转得到,交轴于:将旋转得到,交轴于.过抛物线顶点的直线与围成的如图中的阴影部分,那么该面积为_________.

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数图象如图,下列结论:①;②;③当时,;④;⑤若,且,则.其中正确的有(

A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt中,,点边上一个动点,过点交边,过点作射线边于点,交射线于点,联结.设两点的距离为两点的距离为

1)求证:

2)求关于的函数解析式,并写出的取值范围;

3)点在运动过程中,能否构成等腰三角形?如果能,请直接写出的长,如果不能,请简要说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,在Rt中,,点是斜边的中点,,且于点,联结

1)求证:

2)当时,求的值;

3)在(2)的条件下,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在梯形中,交边于点

1)当点恰好重合时(如图1),求的长;

2)问:是否可能使都相似?若能,请求出此时的长;若不能,请说明理由(如图2).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,平面直角坐标系中,BC两点的坐标分别为B03)和C0,﹣),点Ax轴正半轴上,且满足∠BAO30°

1)过点CCEAB于点E,交AO于点F,点G为线段OC上一动点,连接GF,将OFG沿FG翻折使点O落在平面内的点O处,连接OC,求线段OF的长以及线段OC的最小值;

2)如图2,点D的坐标为D(﹣10),将BDC绕点B顺时针旋转,使得BCAB于点B,将旋转后的BDC沿直线AB平移,平移中的BDC记为BDC,设直线BCx轴交于点MN为平面内任意一点,当以BDMN为顶点的四边形是菱形时,求点M的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着生活水平的不断提高,越来越多的人选择到电影院观看电影,体验视觉盛宴,并且更多的人通过网上平台购票,既快捷又能享受更多优惠.某电影城2019年从网上购买张电影票的费用比现场购买张电影票的费用少:从网上购买张电影票的费用和现场购买张电影票的费用共.

1)求该电影城2019年在网上购票和现场购票每张电影票的价格为多少元?

22019年五一当天,该电影城按照2019年网上购票和现场购票的价格销售电影票,当天售出的总票数为.五一假期过后,观影人数出现下降,于是电影城决定从55日开始调整票价:现场购票价格下调,网上购票价格不变,结果发现,现场购票每张电影票的价格每降低元,售出总票数就比五一当天增加.经统计,55日售出的总票数中有的电影票通过网上售出,其余通过现场售出,且当天票房总收入为元,试求出55日当天现场购票每张电影票的价格为多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1ABC为等腰三角形,AB=AC=aP点是底边BC上的一个动点,PDACPEAB

⑴用a表示四边形ADPE的周长为

⑵点P运动到什么位置时,四边形ADPE是菱形,请说明理由;

⑶如果ABC不是等腰三角形(2),其他条件不变,点P运动到什么位置时,四边形ADPE是菱形(不必说明理由)

查看答案和解析>>

科目: 来源: 题型:

【题目】在一元二次方程中,有著名的韦达定理:对于一元二次方程ax2+bx+c=0(a≠0),如果方程有两个实数根x1x2,那么x1+x2=x1+x2= (说明:定理成立的条件≥0).比如方程2x2-3x-1=0中,=17,所以该方程有两个不等的实数解.记方程的两根为x1x2,那么x1+x2=x1+x2=.请阅读材料回答问题:

(1)已知方程x2-3x-2=0的两根为x1x2,求下列各式的值:

x12+x22;②

(2)已知x1x2是一元二次方程4kx2-4kx+k+1=0的两个实数根.

①是否存在实数k,使(2x1-x2)(x1-2x2)=成立?若存在,求出k的值;若不存在,请说明理由;

②求使-2的值为整数的实数k的整数值.

查看答案和解析>>

同步练习册答案