科目: 来源: 题型:
【题目】抛物线y=x2﹣3mx+2m+1与x轴正半轴交于A,B两点(A在B的左侧),与y轴正半轴交于点C,且OA=OC.
(1)抛物线的解析式为 (直接写出结果);
(2)如图1,D为y轴上一点,过点D的直线y=x+n交抛物线于E,F,若EF=5,求点D的坐标;
(3)将△AOC绕平面内某点逆时针旋转90°至△A'O'C'(点A,C,O的对应点分别为A',C',O'),若旋转后的△A'O'C'恰好有一边的两个端点落在抛物线上,请求出点A'的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】在正方形ABCD中,点H,E,F分别在边AB,BC,CD上,AE⊥HF于点G.
(1)如图1,求证:AE=HF;
(2)如图2,延长FH,交CB的延长线于M,连接AC,交HF于N.若MB=BE,EC=2BE,求的值;
(3)如图3,若AB=2,BH=DF,将线段HF绕点F顺时针旋转90°至线段MF,连接AM,则线段AM的最小值为 .(直接写出结果)
查看答案和解析>>
科目: 来源: 题型:
【题目】为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.
(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;
(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?
(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是 (直接写出结果).
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图所示7×6的正方形网格中,A(2,0),B(3,2),C(4,2),请按要求解答下列问题
(1)画出△ABO向右平移4个单位长度得到△A1B1O1,点A的对应点A1的坐标为 ;
(2)画出△ABO绕点C(4,2)顺时针旋转90°得到△A2B2O2,点A的对应点A2的坐标为 ;
(3)△A1B1O1绕点Q旋转90°可以和△A2B2O2完全重合,请直接写出点Q的坐标为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,分别以△ABC的边AB,AC向两侧作等边三角形△ABD和△ACE,连接BE,CD.
(1)求证:BE=CD;
(2)△ADC可以看成 绕点A (填“顺时针”或“逆时针”)旋转了 °.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】二次函数y=ax2+bx+c的x,y的对应值如下表:
下列关于该函数性质的判断
①该二次函数有最大值;②当x>0时,函数y随x的增大而减小;③不等式y<﹣1的解集是﹣1<x<2;④关于x的一元二次方程ax2+bx+c=0的两个实数根分别位于﹣1<x<和<x<2之间.其中正确结论的个数有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣4a(a≠0)经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,连接AC,BC.
(1)求抛物线的解析式;
(2)过点C作x轴的平行线交抛物线于另一点D,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标;
(3)在抛物线的对称轴上是否存在点M,使得由点M,A,C构成的△MAC是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com