科目: 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc<0;②2a﹣b=0;③4ac﹣b2<8a;④3a+c<0;⑤a﹣b<m(am+b),其中正确的结论的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于给定的图形G和点P,若点P可通过一次向上或向右平移n(n>0)个单位至图形G上某点P′,则称点P为图形G的“可达点”,特别地,当点P在图形G上时,点P为图形G的“可达点”.
(1)如图1,在平面直角坐标系xOy中,点A(1,1),B(2,1),
①在点O、A、B中,不是直线y=﹣x+2的“可达点”的是 ;
②若点A是直线l的“可达点”且点A不在直线l上,写出一条满足要求的直线l的表达式: ;
③若点A、B中有且仅有一点是直线y=kx+2的“可达点”,则k的取值范围是 .
(2)如图2,在平面直角坐标系xOy中,⊙O的半径为1,直线l:y=﹣x+b.
①当b=﹣2时,若直线m上一点N(xN,yN)满足N是⊙O的“可达点”,直接写出xN的取值范围 ;
②若直线m上所有的⊙O的“可达点”构成一条长度不为0的线段,直接写出b的取值范围 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC=CD,∠ACD=α,将线段CD绕点C顺时针旋转90°得到线段CE,连接DE,AE,BD.
(1)依题意补全图形;
(2)判断AE与BD的数量关系与位置关系并加以证明;
(3)若60°<α≤110°,AB=4,AE与BD相交于点G,直接写出点G到直线AB的距离d的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线F1:y=ax2+bx﹣1(a>1)与x轴交于点A、B(点A在点B的左侧),与y轴于点C,已知点A的坐标为(﹣,0),
(1)直接写出b= (用含a的代数式表示);
(2)求点B的坐标;
(3)设抛物线F1的顶点为P1,将该抛物线平移后得到抛物线F2,抛物线F2的顶点P2满足P1P2∥BC,并且抛物线F2过点B,
①设抛物线F2与直线BC的另一个交点为D,判断线段BC与CD的数量关系(不需证明),并直接写出点D的坐标;
②求出抛物线F2与y轴的交点纵坐标的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠B=135°,端点为A的射线l∥CB,点A绕射线l上的某点D旋转一周所形成的图形为F,点B在图形F上.
(1)利用尺规作图确定点D的位置;
(2)判断直线BC与图形F的公共点个数,并说明理由;
(3)若AD=2,∠C=15°,求直线AC被图形F所截得的线段的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】函数y=x2+3x+2的图象如图1所示,根据图象回答问题:
(1)当x满足 时,x2+3x+2>0;
(2)在解决上述问题的基础上,探究解决新问题:
①函数y=的自变量x的取值范围是 ;
②下表是函数y=的几组y与x的对应值.
x | … | ﹣7 | ﹣6 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 3 | 4 | … |
y | … | 5.477 … | 4.472 … | 2.449 … | 1.414 … | 0 | 0 | 1.414 … | 2.449 … | 4.472 … | 5.477 … | … |
如图2,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点的大概位置,请你根据描出的点,画出该函数的图象:
③利用图象,直接写出关于x的方程x4=x2+3x+2的所有近似实数解 (结果精确到0.1)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点A、B(AB<2),现没有直尺,只有一把生锈的圆规,仅能做出半径为1的圆,能否在平面内找到一点F,使得△ABF是等边三角形?
小天经过探究完成了以下的作图步骤:
第一步:分别以点A、B为圆心,1为半径作圆,两圆交于点C;
第二步:以C为圆心,1为半径作圆交第一步中的两圆于点D、E;
第三步:分别以D、E为圆心,1为半径作圆,两圆交于点C、F,
(1)请将图补充完整,并作出△ABF.
(2)以下说法中,
①点C在线段AB的垂直平分线上;
②△CAD和△CBE都是等边三角形;
③点C在线段AF的垂直平分线上;
④△ABF是等边三角形,
正确的有 .(填上所有正确的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯,求两盏景观灯之间的水平距离(提示:请建立平面直角坐标系后,再作答).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com